Muon Anomalies: $R_{K^{(*)}}$ and $(g-2)_{\mu}$

Anders Eller Thomsen

Moriond EW, 12–19 March 2022

 $u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Muon Anomalies —New physics in $b \rightarrow s\mu^+\mu^-$ and $(g-2)_{\mu}$?

$b \rightarrow s \ell^+ \ell^-$ anomalies

$$R_{K^{(*)}} = \frac{\mathrm{BR}(B \rightarrow K^{(*)} \mu^+ \mu^-)}{\mathrm{BR}(B \rightarrow K^{(*)} e^+ e^-)}$$

- LHCb measurements of $R_K^{[1.1,6]}$, $R_{K^*}^{[1.1,6]}$, and $R_{K^*}^{[0.045,1.1]}$ deviate from SM by 3.1σ , 2.5σ , and 2.3σ , respectively
- Average ATLAS, CMS, and LHCb $B_s \rightarrow \mu^+ \mu^$ branching ratio deviate from SM by 2σ

Angular observables in $B \to K^* \mu^+ \mu^-$ and branching ratios in $B \to K^{(*)} \mu^+ \mu^-$ and $B_s \to \phi \mu^+ \mu^-$

 Consistent picture emerges in the EFT: tentative global 4.3σ significance for NP hypothesis
 Lancierini et al. [2104.05631]

New physics in $b \rightarrow s \ell^+ \ell^-$

At low-energies a good fit involves (LEFT)

$$\mathcal{L} \supset \frac{4G_F e^2 V_{tb} V_{ts}^*}{\sqrt{2} (4\pi)^2} (\bar{b}\gamma_\nu s)_{\mathrm{L}} (\bar{\mu}\gamma^\nu (C_9 + C_{10}\gamma_5)\mu)$$

In the unbroken phase of the SM (SMEFT), a left-handed current works well:

$$\mathcal{L}_{\text{SMEFT}} \supset C(\overline{q}_3 \gamma_{\nu} q_2)_{\text{L}} (\overline{\ell}_2 \gamma^{\nu} \ell_2)_{\text{L}}$$

Analyses from Algueró et al. [2104.08921], Ciuchini et al. [2011.01212], Hurth et al. [2104.10058], largely agree but in some cases favor C_9 over C_9-C_{10} .

New physics in $b \rightarrow s \ell^+ \ell^-$

At low-energies a good fit involves (LEFT)

$$\mathcal{L} \supset \frac{4G_F e^2 V_{tb} V_{ts}^*}{\sqrt{2} (4\pi)^2} (\bar{b}\gamma_\nu s)_{\mathrm{L}} (\bar{\mu}\gamma^\nu (C_9 + C_{10}\gamma_5)\mu)$$

In the unbroken phase of the SM (SMEFT), a left-handed current works well:

$$\mathcal{L}_{\text{SMEFT}} \supset C(\overline{q}_3 \gamma_{\nu} q_2)_{\text{L}} (\overline{\ell}_2 \gamma^{\nu} \ell_2)_{\text{L}}$$

Loop models are also viable

Tree-level mediators:

- Z' neutral vector boson UV completion required
- U₁ (U₃) vector LQ UV completion required
- S₃ scalar triplet LQ, single-field extension is possible

Flavor structure needed to avoid, e.g., FCNC bounds. MFV does not work. ${\rm U}(2)^5$ seems like a good candidate.

Analyses from Algueró et al. [2104.08921], Ciuchini et al. [2011.01212], Hurth et al. [2104.10058], largely agree but in some cases favor C_9 over C_9-C_{10} .

$(g-2)_{\mu}$ anomaly

• First measurement of the Fermilab Muon g-2 Experiment is compatible with the Brookhaven experiment. Combined 4.2σ discrepancy with the Muon g-2 Theory Initiative. Anyama et al. [2006.0482]

HVP is the dominant error of the SM prediction. Potential disagreement between Lattice results (BMWc) and the data-driven approach (*R*-ratio) used in SM prediction.

New physics in $(g-2)_{\mu}$

- Many types of NP can account for the discrepancy: VL leptons, 2HDM, MSSM, light vector bosons, *leptoquarks,...*
- NP scale can be up to order 10 TeV with chiral enhancement

EFT fit to
$$(g-2)_{\mu}$$
, $-\frac{e v}{(4\pi)^2} C_{e\gamma}^{ij} \bar{e}_{L}^{i} \sigma^{\mu\nu} e_{R}^{j} F_{\mu\nu}$, gives

$$|C_{e\gamma}^{ij}| \sim \frac{1}{(14 \,\mathrm{TeV})^2} \begin{pmatrix} \lesssim 10^{-1} & \lesssim 2 \cdot 10^{-5} & \lesssim 1/4 \\ & 1 & \lesssim 1/4 \\ & & \lesssim 2 \cdot 10^5 \end{pmatrix}$$

4

New physics in $(g-2)_{\mu}$

- Many types of NP can account for the discrepancy: VL leptons, 2HDM, MSSM, light vector bosons, *leptoquarks*,...
- NP scale can be up to order 10 TeV with chiral enhancement

Also very strong CP constraints from EDM ($\lesssim 10^{-8}$)

Alignment between all SMEFT operators is required

Isidori, Pagès, Wilsch [2111.13724]; Calibbi et al. [2104.03296]

SMEFT operators

Contributes to the dipole under RG

New physics in $(g-2)_{\mu}$

- Many types of NP can account for the discrepancy: VL leptons, 2HDM, MSSM, light vector bosons, *leptoquarks*,...
- NP scale can be up to order 10 TeV with chiral enhancement
- **EFT** fit to $(g-2)_{\mu}$, $-\frac{ev}{(4\pi)^2}C^{ij}_{e\gamma}\bar{e}^i_{\rm L}\sigma^{\mu\nu}e^j_{\rm R}F_{\mu\nu}$, gives

Alignment between all SMEFT operators is required

Isidori, Pagès, Wilsch [2111.13724]; Calibbi et al. [2104.03296]

 No charged LFV if NP satisfies SM accidental symmetries

SMEFT operators

A Muonic Force

—Are we seeing signs of a new symmetry?

Introducing the muoquarks

Scalar LQ explanations of the anomalies, should exhibit a fairly

LQ interactions

Introducing the muoquarks

Scalar LQ explanations of the anomalies, should exhibit a fairly

Solution: Gauged lepton-flavored $U(1)_X$

- **Robust enough to preserve** $\tau_p \gtrsim 10^{34}$ yr after the breaking of U(1)_X to allow for neutrino masses Hambye, Heek [1712.04871]; Davighi, Kirk, Nardechia [2007.15016]; Greljo, Stangl, AET [2103.13991]; Greljo, Soreq, Stangl, AET, Zupan [2107.07518]; Heeck, Thapa [202.08854]
- Approximate recovery of SM accidental symmetries:

$$\begin{split} \mathrm{U}(1)_B \times \mathrm{U}(1)_{L_e} \times \mathrm{U}(1)_{L_{\mu}} \times \mathrm{U}(1)_{L_{\mu}} \\ S \sim (-\frac{1}{3}, \, 0, \, -1, \, 0) \end{split}$$

• ~500 anomaly-free models with integer charge ratios \leq 10 in SM+3 $\nu_{\rm R}$. Examples: $X = L_{\mu} - L_{\tau}$, $X = B - 3L_{\mu}$, and many, many others

The Nightmare Scenario!

Muoquark (LQ) mediated anomalies

with couplings respecting lepton-flavored $\mathrm{U}(1)_X$

Direct searches give only modest constraints: $M_{1,3} \gtrsim 1.7 \,\mathrm{TeV}$

ATLAS collaboration [2006.05872]

- Decoupling limit $\binom{v_X \to \infty}{g_X \to 0}$ ensures NP contribution exclusively from $S_{1,3}$
- Approximate U(2) flavor symmetry Kagan et al. [0903.1794]; Barbieri et al. [1105.2296]
- Existing 1-loop S_{1,3} matching results Gherardi, Marzocca, Venturini [2003.12525]
- Global fit with smelli (also using wilson and flavio)

The Nightmare Scenario!

Muoquark (LQ) mediated anomalies

with couplings respecting lepton-flavored $U(1)_X$

Direct searches give only modest constraints: $M_{1,3} \gtrsim 1.7 \,\mathrm{TeV}$

- Decoupling limit $\binom{v_X \to \infty}{g_X \to 0}$ ensures NP contribution exclusively from $S_{1,3}$
- Approximate U(2) flavor symmetry Kagan et al. [0903.1794]; Barbieri et al. [1105.2296]
- Existing 1-loop S_{1,3} matching results Gherardi, Marzocca, Venturini [2003.12525]
- Global fit with smelli (also using wilson and flavio)

Greljo, Stangl, AET [2103.13991]

6

Do we need two muoquarks?

Solution: Gauged lepton-flavored $U(1)_X$.

Scenarios:

• S_3 muoquark for $b \rightarrow s\mu\mu$ and S_1 muoquark for $(g-2)_{\mu}$

Solution: Gauged lepton-flavored $U(1)_X$.

Scenarios:

- S_3 muoquark for $b \rightarrow s \mu \mu$ and S_1 muoquark for $(g-2)_{\mu}$
- S_3 muoquark for $b \to s\mu\mu$ and X_{μ} vector boson of $U(1)_X$ for $(g-2)_{\mu}$. Are there $U(1)_X$ groups that allow for this scenario? Charges of SM

(chiral) fermions

$$\mathcal{L} \supset -\frac{1}{4}X_{\mu\nu}^{2} + \frac{1}{2}\varepsilon X_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m_{X}^{2}X_{\mu}^{2} + g_{X}X^{\mu}\sum_{f}x_{f}^{'}\overline{f}\gamma_{\mu}f$$
kinetix mixing
parameter

Addressing $(g-2)_{\mu}$ with the muonic force

 m_X

 x_f : charge of fermion f ε : kinetic mixing of X and γ

Baek *et al.* [hep-ph/0104141]; Ma, Roy, Roy [hep-ph/0110146]; many more...

Addressing $(g-2)_{\mu}$ with the muonic force

Addressing $(g-2)_{\mu}$ with the muonic force

Anders Eller Thomsen (Bern U.)

Light vector solution: $X = L_{\mu} - L_{\tau}$

Greljo, Soreq, Stangl, AET, Zupan [2107.07518]

Complementary constraints on a light X

Complementary constraints on a light X

Complementary constraints on a light X

Anders Eller Thomsen (Bern U.)

Vector-like U(1)_X solutions to $(g-2)_{\mu}$

 $\sin(\alpha)(L_e - L_\mu) + \cos(\alpha)(B/3 - L_\mu) + R(L_\mu - L_\tau)$

Light, quark-universal X solutions to $(g - 2)_{\mu}$ in the space of vector-like $U(1)_X$ at $m_X = 200 \text{ MeV}$. Includes NSI osc., NA64, and Borexino bounds. Grejo, Stangl, AET, Zupan [WIP]

Anders Eller Thomsen (Bern U.)

Muon anomalies

Moriond EW 2022

Allowed model with *B* charge

Model	Type A	Type B	Type C	(Type D)	
$b \rightarrow s \mu \mu$	S_3	S_3	heavy X	light X	
$(g-2)_{\mu}$	S_{1}/R_{2}	$light\; X$	S_1/R_2		
	\checkmark	\checkmark	?	×	

- Lepton-flavored gauge symmetries provide a good organizing principle for scalar-Leptoquark explanations of the muon anomalies
- Kinetic mixing between X and γ opens up *one* direction in models of light X solutions to $(g-2)_{\mu}$ with charged quarks
- We have to be prepared for the possibility (Type A) that new physics in the anomalies can be very elusive!

Backup

A single mediator seems unlikely

- Float X-couplings in b-s current, and muon vector and axial charges q_V, q_A. Assume ε = 0.
- Upper bound on b-scouplings to X from BR $(B \rightarrow K\nu\nu)$.
- $B \rightarrow K \nu \nu$ bound might be looser for $m_X > 2.5 \, {\rm GeV}$ Crivellin *et al.* [2202.12900]
- Using kinetic mixing to relax CCFR bound, EW precision excludes $m_X \gtrsim 5 \, {\rm GeV}$

Greljo, Soreq, Stangl, AET, Zupan [2107.07518]

14

Unification of lepton-flavored $U(1)_X$

Addressing $(g-2)_{\mu}$ with the muonic force.

High energy vector boson mediator

The $B - 3L_{\mu}$ model

	Fields	$SU(3)_c$	${\rm SU}(2)_{\rm L}$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_{B-3L_{\mu}}$
	$q_{ m L}$	3	2	$^{1}/_{6}$	$^{1/3}$
54	$u_{\rm R}$	3		$^{2}/_{3}$	$^{1/3}$
	$d_{ m R}$	3		$^{-1}/_{3}$	$^{1/3}$
	$\ell_{ m L}$		2	$^{-1}/_{2}$	$\{0, -3, 0\}$
	e_{R}			-1	$\{0, -3, 0\}$
	$ u_{ m R}$			0	$\{0, -3, 0\}$
	Н		2	1/2	0
Warks	S_3	$\overline{3}$	3	$^{1}/_{3}$	8/3
Muoqu)	S_1	$\overline{3}$		$^{1/3}$	8/3
	Φ			0	3
X-breaking				. //	Muonic force