Electrons-for-Neutrinos: Trailblazing precision oscillation measurements

Or Hen (MIT)

Correlations & Hadron structure @ JLab

Neutrino-Nucleus Interactions @ FNAL & JLab

Electron-Ion Collider @ BNL

Hadronic Radioactive Matter @ GSI & JINR

Correlations & Hadron structure @ JLab

Neutrino-Nucleus Interactions @ FNAL & JLab

Electron-Ion Collider @ BNL

EIC

Hadronic Radioactive Matter @ GSI & JINR

Neutrinos oscillate between flavor states when propagating through space

To observe, 'simply' measure neutrino flux at two locations

Deviation from the 'no oscillation' hypothesis measures the oscillation parameters

Detecting Neutrinos: The Nuclear Reality of Oscillation Measurements

$$N_{\alpha}(E_{rec},L) = \sum_{i} \int \Phi_{\alpha}(E,L) \sigma_{i}(E) f_{\sigma_{i}}(E,E_{rec}) dE$$

Measured

$$N_{\alpha}(E_{rec},L) = \sum_{i} \int \frac{\Phi_{\alpha}(E,L)\sigma_{i}(E)f_{\sigma_{i}}(E,E_{rec})}{Wanted} dE$$
Measured
Theory Input

$$N_{\alpha}(E_{rec},L) = \sum_{i} \int \frac{\Phi_{\alpha}(E,L)\sigma_{i}(E)f_{\sigma_{i}}(E,E_{rec})}{Wanted} dE$$
Measured
Wanted
Theory Input

Near Detector Constraints:

- \rightarrow No oscillations @ L=0
- → φ(E, L=0) known
- \rightarrow use to constrain $\sigma(E) \& f_{\sigma}(E, E_{rec})$

$$N_{\alpha}(E_{rec},L) = \sum_{i} \int \frac{\Phi_{\alpha}(E,L)\sigma_{i}(E)f_{\sigma_{i}}(E,E_{rec})}{\text{Wanted}} dE$$
Measured
Theory Input

WARNING: near detector offers integral constrain with different flux from far detector

Interaction theory already main systematic!

TABLE III. Percentage change in the number of 1-ring neutrino mode and antineutrino mode μ -like events before the oscillation fit from 1σ systematic parameter variations, assuming the oscillation parameters $\sin^2 2\theta_{12} = 0.846$, $\sin^2 2\theta_{13} = 0.085$, $\sin^2 \theta_{23} = 0.528$, $\Delta m_{32}^2 = 2.509 \times 10^{-3} \text{ eV}^2/\text{c}^4$, $\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}^2/\text{c}^4$, $\delta_{CP} = 0$ and normal hierarchy. The numbers in the parenthesis correspond to the number of parameters responsible for each group of systematic uncertainties.

Source of uncertainty (number of parameters)	$\delta n_{ m SK}^{ m exp}/n_{ m SK}^{ m exp}$	
	neutrino mode	antineutrino mode
Flux+ ND280 constrained cross section (without ND280 fit result) (61)	10.81%	11.92%
Flux+ ND280 constrained cross section (using ND280 fit result) (61)	2.79%	3.26%
Flux+ all cross section (65)	2.90%	3.35%
Super-Kamiokande detector systematics (12)	3.86%	3.31%
Pion FSI and re-interactions (12)	1.48%	2.06%
Total (using ND280 fit result) (77)	5.06%	5.19%

Why? Nuclear Interactions Are Complex!

Why? Nuclear Interactions Are Complex!

<u>Current event-generator models are often:</u> Effective. Often Empirical. Semi-Classical (no interference) => MUST TUNE TO DATA!

- e & ν interact similarly.
- Many nuclear effects identical (FSI, multi-N effects, ...).
- e beam energy is known
- Test v event generators by running in e-mode (turn off axial response).

- ✓ e & ν interact similarly.
- Many nuclear effects identical (FSI, multi-N effects, ...).
- e beam energy is known
- Test v event generators by running in e-mode (turn off axial response).

e & ν interact similarly

Papadopoulou and Ashkenazi et al (e4v collaboration) Phys. Rev. D 103, 113003 (2021).

*e⁻ scaled by Q⁴

- ✓ e & ν interact similarly.
- ✓ Many nuclear effects identical (FSI, multi-N effects, ...)
- e beam energy is known
- Test v event generators by running in e-mode (turn off axial response).

- ✓ e & ν interact similarly.
- ✓ Many nuclear effects identical (FSI, multi-N effects, ...)
- ✓ e beam energy is known
- Test v event generators by running in e-mode (turn off axial response).

- ✓ e & ν interact similarly.
- ✓ Many nuclear effects identical (FSI, multi-N effects, ...)
- ✓ e beam energy is known
- ➔ Test v event generators by running in e-mode (turn off axial response).

Any model must work for electrons, or it won't work for neutrinos !

- ✓ e beam energy is known
- → Test v event generators by running in e-mode (turn off axial response).

New Old Data!

CLAS-6

- $\diamond \sim 4\pi$ acceptance (almost).
- \diamond Charged particles (8-143°):
 - P_p>300 MeV/c
 - $P_{\pi} > 150 \text{ MeV/c}$
- \diamond Neutral particles:
 - EM calorimeter (8-75°)
 - TOF (8-143°)

New 'Old' Data: CLAS-6 @ JLab

Sanity Check: inclusive cross-sections

<u>Goal:</u> Use CLAS data to study E_{beam} reconstruction and vector-current cross-sections for different energies / nuclei.

- Select 'clean' (e,e'p) events (no π , 2nd p, ...),
- Reweight by $\sigma_{e\text{-}N}$ / $\sigma_{\nu\text{-}N}$ (Q⁴),
- Analyze as 'neutrino data' (assume unknown E_{beam}),
- Reconstruct E_{beam} using different methods,
- Compare to theory (GENIE) predictions.

<u>Goal:</u> Use CLAS data to study E_{beam} reconstruction and vector-current cross-sections for different energies / nuclei.

- Select 'clean' (e,e'p) events (no π , 2nd p, ...),
- Reweight by $\sigma_{e\text{-}N}$ / $\sigma_{\nu\text{-}N}$ (Q⁴),
- Analyze as 'neutrino data' (assume unknown E_{beam}),
- Reconstruct E_{beam} using different methods,
- Compare to theory (GENIE) predictions.

<u>Goal:</u> Use CLAS data to study E_{beam} reconstruction and vector-current cross-sections for different energies / nuclei.

- Select 'clean' (e,e'p) events (no π , 2nd p, ...),
- Reweight by $\sigma_{e\text{-}N}$ / $\sigma_{\nu\text{-}N}$ (Q⁴),
- Analyze as 'neutrino data' (assume unknown E_{beam}),
- Reconstruct E_{beam} using different methods,
- Compare to theory (GENIE) predictions.

<u>Goal:</u> Use CLAS data to study E_{beam} reconstruction and vector-current cross-sections for different energies / nuclei.

- Select 'clean' (e,e'p) events (no π , 2nd p, ...),
- Reweight by $\sigma_{e\text{-}N}$ / $\sigma_{
 u\text{-}N}$ (Q⁴),
- Analyze as 'neutrino data' (assume unknown E_{beam}),
- Reconstruct E_{beam} using different methods,
- Compare to theory (GENIE) predictions.

<u>Goal:</u> Use CLAS data to study E_{beam} reconstruction and vector-current cross-sections for different energies / nuclei.

- Select 'clean' (e,e'p) events (no π , 2nd p, ...),
- Reweight by $\sigma_{e\text{-}N}$ / $\sigma_{
 u\text{-}N}$ (Q⁴),
- Analyze as 'neutrino data' (assume unknown E_{beam}),
- Reconstruct E_{beam} using different methods,
- Compare to theory (GENIE) predictions.

<u>Goal:</u> Use CLAS data to study E_{beam} reconstruction and vector-current cross-sections for different energies / nuclei.

- Select 'clean' (e,e'p) events (no π , 2nd p, ...),
- Reweight by $\sigma_{e\text{-}N}$ / $\sigma_{
 u\text{-}N}$ (Q⁴),
- Analyze as 'neutrino data' (assume unknown E_{beam}),
- Reconstruct E_{beam} using different methods,
- Compare to theory (GENIE) predictions.

Energy Reconstruction

Cherenkov detectors:

Assuming QE interaction Using solely the final state lepton

$$E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta_l)}$$

(e,e') Data-Theory Disagreements

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

 $E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta_l)}$

(e,e') Data-Theory Disagreements

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

$$E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta_l)}$$

(e,e') Data-Theory Disagreements

4.453 GeV (x5)

 $\frac{2\mathrm{M}\epsilon + 2\mathrm{M}\mathrm{E}_l - \mathrm{m}_l^2}{(\mathrm{M} - \mathrm{E}_l + |\mathrm{k}_l|\cos\theta_l)}$

 E_{QE} =

Inclusive cross-section was shown to be overall well reproduced.

But... Energy reconstruction is not!

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

12

Energy Reconstruction

Cherenkov detectors:

Assuming QE interaction Using solely the final state lepton $2Mc + 2ME = m^2$

 $E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta_l)}$

Tracking detectors: Need good hadronic reconstruction

$$E_{\rm cal} = E_l + E_p^{\rm kin} + \epsilon$$

(e,e'p) Energy Reconstruction

 $\mathbf{E}_{cal} = \mathbf{E}_l + \mathbf{T}_p + \epsilon$

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

Gest worse as A & E increase...

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

 $\mathbf{E}_{cal} = \mathbf{E}_l + \mathbf{T}_p + \epsilon$

Transverse Constraints

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

Transverse Constraints

(CLAS & e4v collaborations), Nature **599**, 565 (2021).

Also... Issues @ high-energy!

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

Also... Issues \w Particle Multiplicities

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

Newly Measured CLAS-12 data

New Paradigm for Precision Oscillation Studies

Growing Collaboration!

Join us!

Overwhelming Community Support

‡ Fermilab

MINERvA

GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project

Backup

CLAS-6 Coverage

 $p_{min} pprox 300$ MeV/c

φ[Deg.]

Adding Radiation to GENIE

Excluding Radiation in data

Excluding Radiation in data

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e'p) events.

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e'p) events.

Data Driven Correction:

- 1. Use measured (e,e'p π) events,
- 2. Rotate π around q to determine its acceptance,
- 3. Subtract (e,e'p π) contributions

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e'p) events.

Data Driven Correction:

- 1. Use measured (e,e'p π) events,
- 2. Rotate π around q to determine its acceptance,
- 3. Subtract (e,e'p π) contributions
- 4. Do the same for 2p, 3p 2p+ π etc.

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e'p) events.

Data Driven Correction:

- 1. Use measured (e,e'p π) events,
- 2. Rotate π around q to determine its acceptance,
- 3. Subtract (e,e'p π) contributions
- 4. Do the same for 2p, 3p 2p+ π etc.

Systematics

Source	Uncertainty (%)
Detector acceptance Identification cuts φ _{qπ} cross section dependence Number of rotations	2,2.1,4.7 (@ 1.1,2.2,4.4 GeV)
Sector dependence	6
Acceptance correction	2-15
Overall normalization	3
Electron inefficiency	2

Attacking the Monster From All Sides

Monochromatic e⁻:

- Vector currents
- Nuclear FSI
- Ground state

Attacking the Monster From All Sides

Monochromatic e⁻:

- Vector currents
- Nuclear FSI
- Ground state

Event-Generators

 ν near-detector:

- Axial & Vector-Axial currents
- Ultra-low Q²

Attacking the Monster From All Sides

