

Recent results from Borexino

56th Rencontres de Moriond, March 17th 2022

Borexino OO Measurement of CNO neutrinos

Directionality 00000

Outline

2007-2021: 14 years of Solar neutrinos

Phase I

First high-precision measurement of $^7{\rm Be},$ measurement of pep and $^8{\rm B}~\nu's$

Phase II

Comprehensive measurement of the pp-chain

Phase III First evidence of neutrinos from CNO-cycle

First directional measurement of sub-MeV solar neutrinos

► CID

Correlated and Integrated Directionality Application to ⁷Be

Solar neutrinos	
00	

Measurement of CNO neutrinos

Neutrinos from the Sun

Sun is powered by nuclear fusion reactions: $4^{1}H \rightarrow {}^{4}He + \dots$

A.S. Eddington Observatory 43 (1920), Nature (1920)

The CNO cycle Weizsäcker (1937, 1938), Bethe (1939)

Solar neutrinos

Borexin OO Measurement of CNO neutrinos

Directionality 00000

The Solar Neutrino Spectrum

Radiochemical experiments

Measurement of the **integrated spectrum** above threshold

Water Čerenkov

- Large mass
- High energy threshold

High precision measurement of ⁸B

Liquid Scintillator

- Low energy threshold
 - \hookrightarrow complete coverage of the spectrum
- Spectral separation of solar-ν components

Solar neutrino: OO Borexino

Measurement of CNO neutrinos

Directionality 00000

Detection method

e⁻-neutrino elastic scattering

Expected rate of $^7\text{Be-}\nu$ is ≈ 50 cpd/100 t (10 $^{-9}$ Bq/kg) Typical activity of tap water \approx 1 Bq/kg

Background suppression and high radiopurity are essential for Borexino success

The radiopurity challenge

D. Guffanti (University & INFN MiB)

The Borexino Experiment @ LNGS

Borexino is an **ultrapure liquid scintillator** experiment installed at the Gran Sasso National Laboratories of the Italian National Institute of Nuclear Physics

- $\begin{array}{l} \triangleright \quad \text{Light Yield 550 p.e./MeV} \\ \hookrightarrow \Delta E/E \sim 6\%/\sqrt{E[\text{MeV}]} \end{array}$
- ▷ Position reconstruction based on time of flight (\approx 11 cm resolution at 1 MeV)

Measurement of CNO neutrinos

The Borexino Experiment @ LNGS

Borexino is an **ultrapure liquid scintillator** experiment installed at the Gran Sasso National Laboratories of the Italian National Institute of Nuclear Physics

- $\begin{array}{l} \triangleright \quad \text{Light Yield 550 p.e./MeV} \\ \hookrightarrow \Delta E/E \sim 6\%/\sqrt{E[\text{MeV}]} \end{array}$
- ▷ Position reconstruction based on time of flight (≈ 11 cm resolution at 1 MeV)

Solar- ν highlights

- 2007-2010 Phase-I ⁷Be, ⁸B, pep
- ▶ 2010-2011 **Purification Camp.**
- 2012-2016 Phase-II precision pp-chain
- 2016-... Phase-III: The Quest for CNO

Borexind OO Measurement of CNO neutrinos

Directionality 00000

Astrophysics

Relative efficiency of *pp*-chain and CNO-cycle depends on

Local temperature
Element local density

In the Sun $L(pp)/L_{\odot} \approx 99\%$ vs $L(CNO)/L_{\odot} \approx 1\%$

Solar neutrinos

Borexino OO

Astrophysics

Relative efficiency of *pp*-chain and CNO-cycle depends on

Local temperature
Element local density

In the Sun $L(pp)/L_{\odot} \approx 99\%$ vs $L(CNO)/L_{\odot} \approx 1\%$

Measurement of CNO neutrinos ●00000 Directionality 00000

Solar Physics

Measurement of $\Phi(CNO)$ \hookrightarrow indication of C+N abundance in the Sun \hookrightarrow Hint for solar metallicity

Re-evaluation of photospheric composition $\hookrightarrow \approx 20\%$ reduction of solar metallicity $\cdot 10^{-2}$

Strong tension with helioseismology data

Solar- ν also influenced by composition

Full Spectrum

Full Spectrum

Muon cut

pprox 4300 $\mu/{
m day}$ crossing ID Removes μ , μ -induced n and cosmogenics

Full Spectrum

Muon cut

pprox 4300 $\mu/{
m day}$ crossing ID Removes μ , μ -induced n and cosmogenics

Fiducial Volume cut

Reduction of external and surface background

Full Spectrum

Muon cut

pprox 4300 $\mu/{
m day}$ crossing ID Removes μ , μ -induced n and cosmogenics

Fiducial Volume cut

Reduction of external and surface background

¹¹C suppression (TFC cut)

- μ –*n* pairs coincidences
- + space-time correlation with β -like ev.

Measurement of CNO neutrinos

The CNO challenge

		Measurement of CNO neutrinos ○○○●○○	
²¹⁰ Bi independe	nt constraint	F. Villante et al, Phys. Let arXiv:1104.1335 [her	t. B 701(3) (2011) 2-ph]

²¹⁰Pb dissolved in the scintillator

 $\stackrel{210}{\text{Pb}} \xrightarrow{(\beta)t_{1/2}}_{22.2\,y} \xrightarrow{210} \text{Bi} \xrightarrow{(\beta)t_{1/2}}_{5.0\,\text{d}} \xrightarrow{210} \text{Po} \xrightarrow{(\alpha)t_{1/2}}_{138.4\,\text{d}} \xrightarrow{206} \text{Pb (stable)}$

No source of $^{210}\text{Pb} \rightarrow ^{210}\text{Bi}$ in equilibrium $\hookrightarrow ^{210}\text{Po}$ in equilibrium too

F. Villante et al, Phys. Lett. B 701(3) (2011) arXiv:1104.1335 [hep-ph]
o can detach from nylon vessel!
tive currents inside the LS ¹⁰ Po inside the FV al stabilization of the entire detector ion, TACS, Hall C stabilization,)

			Measurement of CNO neutrinos ○○○●○○	
²¹⁰ Bi independ	ent constraint		F. Villante et arXiv:1104	: al, Phys. Lett. B 701(3) (2011) 4.1335 [hep-ph]
²¹⁰ Pb dissolved in th ²¹⁰ Pb $\frac{(\beta)t_{1/2}}{22.2y}$ ²¹⁰ B No source of ²¹⁰ Pb -	The scintillator is $\frac{(\beta)t_{1/2}}{5.0 \text{ d}} \stackrel{2^{10}}{\to} Po \xrightarrow{(\alpha)t_{1/2}}{138.4 \text{ d}} \stackrel{2^{06}}{\to} Pb$ $\Rightarrow \stackrel{2^{10}}{\to} Bi \text{ in equilibrium}$ $\hookrightarrow \stackrel{2^{10}}{\to} Po \text{ in equilibrium}$	(stable) too	▲ ²¹⁰ Po can detach from r Convective currents insid carry ²¹⁰ Po inside the FV Thermal stabilization of (Insulation, TACS, Hall C stab	nylon vessel! e the LS the entire detector bilization,)
	Cubic spine	100 90 70 70 uate [cbd] 50 40 30 200 200 200 200 200 200 200 200 200	action of ²¹⁰ Bi constraint frace z position of ²¹⁰ Po mini lign data $P_{min}(^{210}Po) = R(^{210}Bi) + res$	BX Coll., Nature 587 (2020) mum over time sidual convection

$$R_{\min}(^{210}\text{Po}) = R(^{210}\text{Bi}) + \text{residual convection}$$

 $R(^{210}Bi)$ upper limit = 11.5 ± 1.3 cpd/100 t \hookrightarrow

2017

2018

Time

2019

-2 2016

20

2020

D. Guffanti (University & INFN MiB)

Borexing

Measurement of CNO neutrinos

Directionality 00000

Systematics evaluation

- Fit configuration Fit range, binning, ...
- ¹¹C spectrum Distortions induced by noise cuts
- ▶ ²¹⁰**Bi spectrum** Uncertainties on the β spectrum

Detector response

- ▷ Energy scale (0.23%)
- ▷ Non-uniformity (0.28%)
- ▷ Non-linearity (0.40%)

 $R_{\rm CNO} = 7.2^{+2.9}_{-1.7} ({
m stat})^{+0.6}_{-0.5}$ (sys) cpd/100 t

Detection significance estimated with a profiled likelihood test-statistics

No-CNO hp. disfavoured with $>5\sigma$ significance

Borexin

Measurement of CNO neutrinos

Directionality 00000

Event selection

- Phase I(+ II + III) = 740.7 (+1291.5 + 1072)
- ▶ FV: R < 3.3 m (< 3.0 m) = 132.1 t (99.3 t)
- ROI: 0.5–0.8 MeV

Analysis strategy

- PDFs produced by MC
- ▶ Use 1st and 2nd hits
- Add model nuisance parameters to the fit

Main sources of uncertainties

Čerenkov light group velocity

Čerenkov ph. have a different spectrum than Scint. No dedicated calibration - γ -sources used Penalty term in the fit likelihood

Position reconstruction bias

Small bias observed in MC towards true e^- dir. (1.89 cm to be compared with 12 cm resolution) Free parameter in the fit

Borexing

Measurement of CNO neutrinos

Directionality

Results

Measurement of ν events in the ROI from Phase I data $R(^{7}Be)_{CID} = 51.6^{+13.9}_{-12.5} \text{ cpd}/100 \text{ t}$ $R(^{7}Be)_{Phase II} = 48.3 \pm 1.1^{+0.4}_{-0.7} \text{ cpd}/100 \text{ t}$

Borexin

Measurement of CNO neutrinos

Directionality 00000

Results

D. Guffanti (University & INFN MiB)

Latest results from Borexino

0.8

Borexino OO Measurement of CNO neutrinos

Directionality 000●0

Conclusions

Borexino last physics run: 10.07.2021

Complete investigation of the Solar neutrino spectrum

- ▶ Complete measurement of *pp*-chain
- First evidence of CNO-cycle

Fundamental results for testing the Standard Solar Model

First directional measurement of sub-MeV $\nu's$

- ▶ Proves that directional measurements are possible in LS
- Current LS experiment can readily implement CID
- Exiting prospects for next generation optical "hybrid" neutrino detectors

Thank you for your attention

The Standard Solar Model (SSM)

Mass	Helium fraction Y _i	
Hydrogen fraction X _i	\blacktriangleright Metal fraction Z_i	
Physical processes		
 Gravitation 	Nuclear Physics	
Plasma Physics	Radiative Opacity	
 Hydrostatic equilibrium 		
 Hydrostatic equilibrium 		
Energy produced only via pp-Chain and CNO cycle		
 Energy is transported via con convection takes place 	nduction until $r < 0.71 R_{\odot}$, after that	
SSM Predictions		
Complete snapshot of the Sun		
 Helioseismology (sound speed profile) 		
Solar Neutrino Fluxes		

Solar neutrino test of the SSM - pp-chain

BX, Nature 562 (2018)

Luminosity

 L^{ν}_{\odot} L^{γ}_{\odot}

$$L_{\odot}^{\nu} = 4\pi \operatorname{au}^{2} \sum_{i} \alpha_{i} \Phi_{i}$$

= (3.89^{+0.35}_{-0.42}) × 10³³ erg s⁻¹
= (3.846 ± 0.015) × 10³³ erg s⁻¹

³He-³He / ³He-⁴He burning rate

$$\begin{split} \text{Relative intensity of main p-chain terminations} \\ R_{I/II} &= \frac{2\Phi({}^7\text{Be})}{\Phi(pp) - \Phi({}^7\text{Be})} \\ R_{I/II}^{BX} &= 0.178 {}^{+0.027}_{-0.023} \\ R_{I/II}^{B16-CS98} &= 0.180 \pm 0.011 \\ R_{I/II}^{B16-AGSS09m} &= 0.161 \pm 0.010 \end{split}$$

D. Guffanti (University & INFN MiB)

Latest results from Borexino

Solar neutrino test of the SSM - CNO-cycle

Use ⁸B neutrino measurement as a thermometer

to fix core temperature and cancel the effect of temperature from $\Phi(CNO)$

\hookrightarrow Access to CN abundance in the Sun core

Haxton & Serenelli, Astrophys.]. 687.1 (2008) Serenelli, Peña-Garay, Haxton, Phys.Rev.D 87(4) (2013)

→ CN do not contribute much to the total opacity but can be used to test crucial SSM assumption

Measurement of pp-chain solar neutrinos with Borexino

Pile-un day × 100 t × N_h ---- External background Total fit: P = 0.7Events per o 10-500 2.000 1.500 Energy (keV) Neutron capture 208TI bulk 208TI emanation 208TI: ourface 0.5 25 35 4 45 0 0 Radius (m

Low-Energy Region[BX, Phys.Rev.D 100 (2019) 8]Exposure: 1291.51 days \times 71.3 tEnergy range: 0.19–2.93 MeVAnalysis: Simultaneous fit of ¹¹C-sub. and -tag. datasets (N_h , r, PS)Constraints: ¹⁴C, pileup, (CNO)

High-Energy Region

[BX, Phys.Rev.D101 (2020) 6]

BX Coll, Nature 562 (2018)

Exposure: 2062.4 days × 227.8 t

Energy range: HER-I 3.2-5.7 MeV + HER-II 5.7-16 MeV

Analysis: Radial events' distribution

Constraints: ²⁰⁸Tl (internal), ²¹⁴Bi (internal)

Measurement of pp-chain solar neutrinos with Borexino

BX Coll, Nature 562 (2018)

Solar- ν	Rate [cpd/100 t]	Flux [cm ⁻² s ⁻¹]	$Flux - SSM$ $[cm^{-2} s^{-1}]$
рр	$134\pm10^{+6}_{-10}$	$(6.1\pm0.5^{+0.3}_{-0.5})\times10^{10}$	$5.98(1\pm0.006) imes10^{10}$ [B16-GS98] $6.03(1\pm0.005) imes10^{10}$ [B16-AGSS09met]
pep [HZ CNO] pep [LZ CNO]	$\begin{array}{c} \text{2.43} \pm 0.36\substack{+0.15 \\ -0.22} \\ \text{2.65} \pm 0.36\substack{+0.15 \\ -0.24} \end{array}$	$\begin{array}{c}(1.27\pm0.19\substack{+0.08\\-0.12})\times10^8\\(1.39\pm0.19\substack{+0.08\\-0.13})\times10^8\end{array}$	$1.44(1\pm0.01) imes10^{8}$ [B16-GS98] $1.46(1\pm0.009) imes10^{8}$ [B16-AGSS09met]
⁷ Be	$48.3 \pm 1.1^{+0.4}_{-0.7}$	$(4.99\pm0.11^{+0.06}_{-0.0.8})\times10^{9}$	$4.93(1\pm0.06) imes10^9$ [B16-GS98] $4.50(1\pm0.06) imes10^{10}$ [B16-AGSS09met]
⁸ B	$0.223^{+0.015+0.4}_{-0.016-0.7}$	$(5.68^{+0.39}_{-0.41}{}^{+0.06}_{-0.08})\times10^6$	$5.46(1\pm0.12) imes10^{6}$ [B16-GS98] $4.50(1\pm0.12) imes10^{6}$ [B16-AGSS09met]

Solar neutrino survival probability

A. Ianni in PDG 2020 Neutrino masses, mixing, and Oscillation

La Thuile, 17.03.2022 23 / 17

D. Bravo-Berguño et al, NIM A 885 (2018) arXiv:1712.05709 [physics.ins-det]

Understanding Borexino fluid dynamics

Temperature Monitoring System

Latitudinal Temperature Probe System 54 Temperature probes

Fluid dynamics simulation Improve understanding of the detector fluid dynamics V. di Marcello et al., NIM A 964 (2020)

Thermal Stabilization \rightarrow Fix temperature gradient

Detector Insulation

Thermal Insulation System (TIS) Double layer of mineral wool (20 cm)

Active Gradient Stabilization System (AGSS)

controlled temperature water loop circuits (uppermost dome "ring")

Hall C Temperature Stabilization

Effect on ²¹⁰Po spatial density

BX Coll, Nature 587 (2020) arXiv:2006.15115 [hep-ex]

Low density Polonium Field

BX Coll, arXiv:2106.10973 [hep-ex]

¹¹C suppression

