

Recent results from NOvA

Erika Catano-Mur

Rencontres de Moriond EW. La Thuile, Italy, March 16th 2022

NOvA Far Detector Construction Pictured: 1 block (total 28) March 4th 2013

3-flavor neutrino oscillations

- 3-flavor neutrino oscillations are transitions in-flight between the flavor neutrinos $v_e v_\mu v_\tau$
 - Caused by non-zero neutrino masses and neutrino mixing.

$$\begin{array}{c} \left| \nu_{\alpha} \right\rangle = \sum_{i} U_{\alpha i}^{*} \left| \nu_{i} \right\rangle \\ \stackrel{\text{i Mixing matrix}}{\text{matrix}} \end{array} \begin{array}{c} \left| \nu_{\alpha} \right\rangle = \left| \sum_{i} U_{\alpha i}^{*} \left| \nu_{i} \right\rangle \\ \stackrel{\text{Mixing matrix}}{\text{matrix}} \end{array} \right| \left| \nu_{\alpha} \right\rangle \\ \begin{array}{c} \left| \nu_{\alpha} \right\rangle = \left| \sum_{i} U_{\alpha} \right| \left| \nu_{i} \right\rangle \\ \stackrel{\text{Mixing matrix}}{\text{matrix}} \end{array} \right| \left| \nu_{\alpha} \right\rangle \\ \stackrel{\text{Mass states}}{\text{matrix}} \left| \nu_{\alpha} \right\rangle \\ \begin{array}{c} \left| \nu_{\alpha} \right\rangle = \left| \sum_{i} U_{\alpha} \right| \left| \nu_{i} \right\rangle \\ \stackrel{\text{Mass states}}{\text{matrix}} \left| \nu_{\alpha} \right\rangle \\ \stackrel{\text{Mass states}}{\text{matrix}} \left| \nu_{\alpha} \right\rangle \\ \begin{array}{c} \left| \nu_{\alpha} \right\rangle = \left| \nu_{\alpha} \right| \left| \nu_{\alpha} \right\rangle \\ \stackrel{\text{Mass states}}{\text{matrix}} \left| \nu_{\alpha} \right\rangle \\ \stackrel{\text{Mass states}}{\text{matrix}} \left| \nu_{\alpha} \right\rangle \\ \begin{array}{c} \left| \nu_{\alpha} \right\rangle = \left| \nu_{\alpha} \right| \left| \nu_{\alpha} \right\rangle \\ \stackrel{\text{Mass states}}{\text{matrix}} \left| \nu_{\alpha} \right\rangle \\ \stackrel{\text{Mass states}}{\text{matrix}} \left| \nu_{\alpha} \right\rangle \\ \stackrel{\text{Mass states}}{\text{matrix}} \left| \nu_{\alpha} \right\rangle \\ \begin{array}{c} \left| \nu_{\alpha} \right\rangle \\ \stackrel{\text{Mass states}}{\text{matrix}} \left| \nu_{\alpha} \right| \left| \nu_{\alpha} \right\rangle \\ \stackrel{\text{Mass states}}{\text{matrix}} \left| \nu_{\alpha} \right| \left| \nu_{\alpha} \right| \left| \nu_{\alpha} \right\rangle \\ \stackrel{\text{Mass states}}{\text{matrix}} \left| \nu_{\alpha} \right| \nu_{\alpha} \right| \left| \nu_{\alpha} \right| \left| \nu_{\alpha} \right| \left| \nu_{\alpha} \right| \left| \nu_{\alpha} \right| \left|$$

- The oscillation probabilities depend on:
 - Neutrino energy (E_{ν})
 - Distance between the source and the detector ("baseline" L)
 - Squared mass differences (Δm_{21}^2 , Δm_{32}^2)
 - Parameters of the mixing matrix: 3 angles and 1 phase $(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP})$ measure

$U_{i}^{*}e^{-i\frac{m_{i}^{2}L}{2E}}U_{i}\Big|^{2}$

2

Experimental "settings"

_What we want to

Measurements of oscillation parameters

• Experiments contributing to the determination of the oscillation parameters:

Experiment	Dominant	Important
Solar Experiments	θ_{12}	Δm^2_{21} , $ heta_{13}$
Reactor LBL (KamLAND)	Δm^2_{21}	$ heta_{12}$, $ heta_{13}$
Reactor MBL (Daya-Bay, Reno, D-Chooz)	$ \theta_{13}, \Delta m^2_{31,32} $	
Atmospheric Experiments (SK, IC-DC)		$ \theta_{23} \Delta m^2_{31,32} , \theta_{13} $
Accel LBL $\nu_{\mu}, \bar{\nu}_{\mu}$, Disapp (K2K, MINOS, T2K, NO ν A)	$ \Delta m^2_{31,32} , \theta_{23} $	
Accel LBL $\nu_e, \bar{\nu}_e$ App (MINOS, T2K, NO ν A)	$\delta_{ m CP}$	$ heta_{13}\;, heta_{23}$

Our current knowledge:

 $\sin^2(\theta_{12}) = 0.307 \pm 0.013$ $\sin^2\left(\theta_{13}\right) = 0.0220 \pm 0.0007$ $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{eV}^2$

 $\sin^2(\theta_{23}) = 0.546 \pm 0.021$ $\Delta m_{32}^2 = (+2.453 \pm 0.033) \times 10^{-3} \text{eV}^2 \text{ (normal)}$ $\Delta m_{32}^2 = (-2.536 \pm 0.034) \times 10^{-3} \text{eV}^2$ (inverted)

Source: PDG, 2021 update

Erika Catano-Mur (William & Mary, NOvA)

 $, \delta_{\mathrm{CP}}$

Measurements of oscillation parameters

• Experiments contributing to the determination of the oscillation parameters:

Experiment	Dominant	Important
Solar Experiments	θ_{12}	Δm^2_{21} , $ heta_{13}$
Reactor LBL (KamLAND)	Δm^2_{21}	$ heta_{12}$, $ heta_{13}$
Reactor MBL (Daya-Bay, Reno, D-Chooz)	$ \theta_{13}, \Delta m^2_{31,32} $	
Atmospheric Experiments (SK, IC-DC)		$ \theta_{23} \Delta m^2_{31,32} , \theta_{13} $
Accel LBL $\nu_{\mu}, \bar{\nu}_{\mu}$, Disapp (K2K, MINOS, T2K, NO ν A)	$ \Delta m^2_{31,32} , \theta_{23} $	
Accel LBL $\nu_e, \bar{\nu}_e$ App (MINOS, T2K, NO ν A)	$\delta_{ m CP}$	$ heta_{13}\;, heta_{23}$

• Our current knowledge:

 $\sin^2(\theta_{12}) = 0.307 \pm 0.013$ $\sin^2\left(\theta_{13}\right) = 0.0220 \pm 0.0007$ $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{eV}^2$

$$\sin^2(\theta_{23}) = 0.546 \pm 0.021$$
$$\Delta m_{32}^2 = (+2.453 \pm 0.033)$$
$$\Delta m_{32}^2 = (-2.536 \pm 0.034)$$

Source: PDG, 2021 update

Erika Catano-Mur (William & Mary, NOvA)

Δ

Known unknowns

Is the neutrino mass ordering normal or inverted?

 $\operatorname{sgn}(\Delta m_{32}^2) = ? \uparrow m^2$ ν_3 ν_2 Δm^2_{21} Δm^2_{32} v_e $\mu_{\tau} \nu_1$ ν_2 $\mathcal{V}_{\boldsymbol{\rho}} \mathcal{V}_{\boldsymbol{\mu}} \mathcal{V}_{\boldsymbol{\tau}}$ Δm^2_{32} Δm^{2}_{21} ν_3 \mathcal{V}_1 Normal Inverted

Known unknowns

Is θ_{23} mixing maximal? ($\theta_{23} = \pi/4$: ν_{μ} - ν_{τ} symmetry) If not, what is the octant of θ_{23} ? $\theta_{23} \gtrless \pi/4?$

Known unknowns

The NOvA Experiment

NOvA is a long-baseline accelerator neutrino experiment. It's primary goal is the estimation of 3-flavor oscillation parameters in the atmospheric sector: Δm_{32}^2 , $\sin^2\theta_{23}$, δ_{CP}

 $\nu_{\mu} \rightarrow \nu_{\mu} \text{ oscillations}$

- $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{\mu}}$ disappearance can constrain $\sin^2 2\theta_{23}$ and $|\Delta m^2_{32}|$
- Strategy:
 - Identify muon neutrinos
 - Reconstruct their energy
 - Compare the data with the unoscillated prediction
 - "Dip" location $\rightarrow |\Delta m^2_{32}|$
 - Amplitude $\rightarrow sin^2 2\theta_{23}$

 $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

• $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance depend on $\sin^{2}\theta_{23}$, $\Delta m^{2}{}_{32}$ and δ_{CP}

Erika Catano-Mur (William & Mary, NOvA)

Rencontres de Moriond EW. March 16, 2022

 $\rightarrow v_e$ oscillations ν_{μ}

- $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance depend on $\sin^2\theta_{23}$, Δm^2_{32} and δ_{CP}
- Strategy: ٠
 - Identify electron neutrinos
 - Analyze neutrino and antineutrino beam data simultaneously
 - Use the relative (a)symmetries between v_e and \overline{v}_e appearance rates to set constraints

NuMI muon neutrino beam

- NuMI: Neutrinos from the Main • Injector.
 - Part of the Fermilab Accelerator Complex
- Two running configurations: •
 - Neutrino beam (ν_{μ}) •
 - Antineutrino beam ($\overline{\nu}_{\mu}$) •

- The NOvA detectors are located off-axis.
- Flux peaks around 2GeV •

The NOvA detectors

13

Rencontres de Moriond EW. March 16, 2022

Erika Catano-Mur (William & Mary, NOvA)

The NOvA detectors

Collecting neutrinos

Near detector

Far detector

Erika Catano-Mur (William & Mary, NOvA)

Purc 10407 / 1 Event 27930 / --UTC Thu Sep 4, 201

Beam direction

Rencontres de Moriond EW. March 16, 2022

Collecting neutrinos

Near detector

Far detector 344064 channels. 810 km from source <1 signal neutrino event per day

20193 channels. 1 km from beam source ~5 contained neutrino events per beam pulse (every 1.33 s) Negligible cosmic background (underground)

130 kHz cosmic ray background

Erika Catano-Mur (William & Mary, NOvA)

Rencontres de Moriond EW. March 16, 2022

Identifying neutrino events

- Neutrino interaction candidates are network (CNN)
 - A deep-learning technique from computer vision
 - New, faster network for 2020.
- - In-time with the beam
 - track
 - Reject cosmic rays with BDTs

identified using a **convolutional neural**

17

In addition to the event CNN selection: Events are contained in the detector • CC v_{μ} require a well-reconstructed μ

Estimating the neutrino energy

Erika Catano-Mur (William & Mary, NOvA)

Rencontres de Moriond EW. March 16, 2022

z (cm)

Constraints using ND data

ND v_{μ} -like samples are used to correct the FD $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{\mu} \rightarrow \nu_{e}$ **signal** predictions

ND v_e -like samples are used to correct the FD *v_e* **background** predictions

Constraints using ND data

- Choice of binning / subsamples \rightarrow additional power to control systematic uncertainties
- p_T binning (lepton transverse momentum)
 - "Rebalance" ND/FD kinematics

- v_{μ} binning optimized to see the "dip" in the energy spectrum
- v_e binning optimized to separate signal/background

Erika Catano-Mur (William & Mary, NOvA)

Constraints using ND data

- Choice of binning / subsamples \rightarrow additional power to v-beam control systematic uncertainties Not Extrapolated Lepton Reconstruction Extrapolated p_T binning (lepton transverse momentum) Neutron Uncertainty **Detector Response** "Rebalance" ND/FD kinematics • v Beam **NOvA Preliminary Beam Flux** 0.20 ND Data $v_{\mu} + \overline{v}_{\mu}$ CC Sel. **Detector Calibration** Near Det. ND MC v_{μ} + \overline{v}_{μ} CC Sel. Fraction of Events 0.10 0.02 FD MC v_{μ} + \overline{v}_{μ} CC Sel. **Neutrino Cross Sections** Far Det. Near-Far Uncor. \vec{p}_T^{μ} Systematic Uncertainty -20 -10 ND constraints reduce systematic 0.00 **–** 0.0 0.5 1.0 1.5 uncertainties in the FD prediction from >15% Reco $|\vec{p}_{t}|$ (GeV)
- v_{μ} binning optimized to see the "dip" in the energy spectrum
- v_e binning optimized to separate signal/background

Erika Catano-Mur (William & Mary, NOvA)

to 4-5%

ν_{μ} and $\overline{\nu}_{\mu}$ data at the Far Detector

			v-beam
Observed	211 v.,	105 ν "	ν_{μ}^{10}
Best fit pred.	222.3	105.4	Events
Signal	$214.1^{+14.4}_{-14.0}$	$103.4^{+7.1}_{-7.0}$	2 4 4
Background	8.2 ^{+1.9}	$2.1^{+0.7}_{-0.7}$	view 0.8 0.8 0.6 0.4 0.4 0.2 0 0 1 Reconstructer
2800		600 E × 400 200	3000 3500 31 GeV candidate

Rencontres de Moriond EW. March 16, 2022

 \overline{v} -beam

Erika Catano-Mur (William & Mary, NOvA)

3

Reconstructed neutrino energy (GeV)

v_e and \overline{v}_e data at the Far Detector

Observed	82 ν _e	$33 \overline{\nu}_{e}$
Best fit prediction	85.8	33.2
Signal	59.0 ^{+2.5}	$19.2^{+0.6}_{-0.7}$
Background	$26.8^{+1.6}_{-1.7}$	$14.0^{+0.9}_{-1.0}$

Erika Catano-Mur (William & Mary, NOvA)

Results: v_e / \overline{v}_e appearance + δ_{CP}

82 candidates (27 bkgd.) $\rightarrow v_e$ appearance \checkmark

33 candidates (14 bkgd.) $\rightarrow \overline{\nu}_e$ appearance \checkmark

Results: v_e / \overline{v}_e appearance + δ_{CP}

82 candidates (27 bkgd.) $\rightarrow \nu_e$ appearance \checkmark

33 candidates (14 bkgd.) $\rightarrow \overline{\nu}_e$ appearance \checkmark

Results: v_e / \overline{v}_e appearance + δ_{CP}

82 candidates (27 bkgd.) $\rightarrow \nu_e$ appearance \checkmark

33 candidates (14 bkgd.) $\rightarrow \overline{\nu}_e$ appearance \checkmark

Results: Δm_{32}^2 and $\sin^2 \theta_{23}$

• Best fit: Normal hierarchy $\Delta m_{32}^2 = (2.41 \pm 0.07) \times 10^{-3} \text{ eV}^2$ $\sin^2 \theta_{23} = 0.57^{+0.04}_{-0.03}$ $\delta_{CP} = 0.82\pi$

 Precision measurements of Δm_{32}^2 (3%) and sin² θ_{23} (6%)

NOvA: Future 3-flavor measurements

NOvA is expected to take data through 2026, for a projected total of 60-70 ×10²⁰ POT

- We're half way there!
- Expect increasingly precise measurements of Δm_{32}^2 and • $\sin^2 \theta_{23}$
- We can reach 3σ hierarchy sensitivity for 30-50% of δ values, and $\sim 5\sigma$ in the most favorable case.
- We can also reach a $\sim 2\sigma$ determination of CP violation.

NOvA: Future 3-flavor measurements

NOvA is expected to take data through 2026, for a projected total of 60-70 ×10²⁰ POT

- We're half way there!
- Expect increasingly precise measurements of Δm_{32}^2 and $\sin^2 \theta_{23}$
- We can reach 3σ hierarchy sensitivity for 30-50% of δ values, and $\sim 5\sigma$ in the most favorable case.
- We can also reach a $\sim 2\sigma$ determination of CP violation.

NOvA Test-Beam

- A scaled- down 30-ton NOvA detector
- Deployed at the Fermilab Test Beam Facility •
- Results could address some of the largest • systematic uncertainties in NOvA

NOvA + T2K

- data is underway!
- Different neutrino energies, • systematic uncertainties
- Combined analysis allows

• A joint analysis of NOvA and T2K

30

different baselines, different

degeneracies to be broken and maximizes impact of data taken

NOvA + T2K

Summary

- NOvA's primary goal is the study of **3-flavor neutrino oscillations**, via measurements of muon (anti)neutrino disappearance and electron (anti)neutrino appearance
- NOvA's most recent oscillation analysis results:
 - Precision measurements of Δm^2_{32} (3%) and $\sin^2 \theta_{23}$ (6%)
 - No strong asymmetry between v_e and \overline{v}_e appearance rates
 - The data analyzed so far corresponds to ~half of the total expected.
- Coming soon:
 - NOvA Bayesian analysis •
 - NOvA+T2K combined analysis •
 - Analysis upgrades + new results (2023-24) •
 - Cross sections, sterile searches, cosmic ray physics, exotics... •

Thank you!

The NOvA Collaboration

https://novaexperiment.fnal.gov/

NOvA: a rich physics program! Sterile neutrino searches

NOvA + T2K joint analysis

Cosmic ray physics and exotics

Neutrino Energy (GeV) 10^{2} 10² 10 1.2 ND Vs) 0.8 3-Flavor Prob. P(ν_μ 0.6 $-\Delta m_{41}^2 = 0.05 \text{ eV}$ $-\Delta m_{41}^2 = 0.5 \text{ eV}^2$ $\theta_{14} = 0^{\circ}$ $-\Delta m_{41}^2 = 5 \text{ eV}^2$ $\theta_{24} = 10^{\circ}$ 0.2 $\theta_{34} = 35^{\circ}$ $\delta_{24} = 0^{\circ}$

10-1

1 10 L/E (km/GeV)

Cross-section measurements

 10^{-2}

Learn more: <u>NOvA publications</u>. Snowmass LOI: <u>NOvA+T2K</u>, <u>Steriles</u>, <u>Exotics</u>, <u>Cross-sections</u>

Erika Catano-Mur (William & Mary, NOvA)

Rencontres de Moriond EW. March 16, 2022

The NuMI beam dataset

The following analysis uses:

13.6×10²⁰ POT neutrino + 12.5×10²⁰ POT antineutrino beam mode

(2014 - 2020)

Most intense accelerator neutrino beam in the world • Achieved MI Beam Power Hour Average record: 843

- kW on June 2021
- NuMI Target System upgraded for Megawatt Beam Operation

NOvA – T2K

NOvA Preliminary

Spectra with NOvA and T2K Best Fits

Rencontres de Moriond EW. March 16, 2022

Comparing long baseline experiments

Systematics

- Detector calibration: will be improved by the ongoing test beam program at FNAL.
- Neutron uncertainty: cover discrepancies observed in low-energy $\overline{\nu}$ data. Ongoing work to improve our simulation and understanding of neutrons in the detectors.
- Neutrino cross-sections: use own tuning but still noticeable nuclear effects (RPA, MEC).

Pulls in the Fit

- some of our known most important systematics:
- comes primarily from the but generally do not see contradictory pulls.

Largest pulls also correspond to

• Detector light model and energy scale (calibration)

Multi-nucleon cross section

• We see examples where a pull neutrino or antineutrino beam,

Numu FD samples

Erika Catano-Mur (William & Mary, NOvA)

Rencontres de Moriond EW. March 16, 2022

Rencontres de Moriond EW. March 16, 2022

Appearance prob. estimator vs reco E

Erika Catano-Mur (William & Mary, NOvA)

Appearance prob. asymmetry vs Reco E

Rencontres de Moriond EW. March 16, 2022

Results: v_e / \overline{v}_e appearance + asymmetry

2

Analysis strategy

* Updated for this analysis

- Production cross section is a little higher for $\pi^+ \rightarrow \nu_\mu$ than for $\pi^- \rightarrow \overline{\nu_\mu}$
 - p^+ colliding with p^+ and n^0 in the target
- Wrong-sign: v in the $\sqrt{}$ beam (or vice versa).
- Off-axis beam reduces the wrong-sign.
 - WS primarily would primarily come from the • unfocused high-energy tail.

Rencontres de Moriond EW. March 16, 2022

- The big difference is in the interaction: the cross section for antineutrinos is ~2.8 times lower than for neutrinos.
- Antineutrinos also tend to have more lepton energy and less hadronic energy.
 - Lower kinematic *y*
 - More forward-going

MINERvA,

Phys.Rev. D95 (2017) no.7, 072009

Erika Catano-Mur (William & Mary, NOvRencontres de Moriond EW. March 16, 2022

50

All hits recorded in 550 µsec (beam: ~10 µsec)

Erika Catano-Mur (William & Mary, NOvRencontres de Moriond EW. March 16, 2022

Coarse event-level time-space clustering

Slicing:

Erika Catano-Mur (William & Mary, NOvRencontres de Moriond EW. March 16, 2022

Zoom-in in time

Selected slice in the 10 mus beam window = neutrino beam candidate

Erika Catano-Mur (William & Mary, NOvRencontres de Moriond EW. March 16, 2022

Zoom-in in space

53

Same neutrino beam candidate

Erika Catano-Mur (William & Mary, NOvRencontres de Moriond EW. March 16, 2022

Vertexing:

Find lines of energy depositions + optimize

Erika Catano-Mur (William & Mary, NOvRencontres de Moriond EW. March 16, 2022

Find clusters in angular space around vertex. Merge views based on topology and prong dE/dx

Clustering:

Erika Catano-Mur (William & Mary, NOvRencontres de Moriond EW. March 16, 2022

Trace single particle trajectories (muons)

Tracking:

Event selection: Neural Network

- NOvA Utilizes a Convolutional Neural Network (CNN) to identify particles.
- Networks are trained to use filters which convolve images produced by events in the detector to produce a map of the features.
- This process is repeated, allowing for the emergence of more complex features.
- The end result is a categorization of the events into **muon neutrino**, electron neutrino, or NC events.

Anne Norrick

Selection: Validating Performance

- Examine PID efficiency relative to pre-selection.
 - Specifically target the behavior of the PID.
- ND: mixed data-MC sample
 - Mix simulated electrons and real hadronic showers
- FD: decay-in-flight electrons
 - Real electron showers from cosmic muons which decay

Parametrization of the mixing matrix

• The mixing matrix can be written in terms of 3 angles and 1 phase. Usually factorized into components directly related to the experiments:

- Current experiments \rightarrow precision measurements of the angles
- Poorly known: θ_{23} (~5%), δ_{CP} (~unconstrained) •
 - Q: is θ_{23} maximal? i.e. is there symmetry in v_{μ} , v_{τ} mixing to v_2 , v_3 ? If not, what is the octant?
 - Q: is $\delta_{CP} \neq 0$, π ? i.e. is CP violated in the neutrino sector?

59

$c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$ $s_{12} = 0^{12} c_{12} = 0^{12}$

The (12) sector: Solar and reactor

Squared mass differences and hierarchy

- Neutrino oscillation experiments can access the mass differences squared ۲
- By convention, we denote the mass eigenstate with the largest fraction of v_e as v_1 ullet
- Q: mass eigenstate is the lightest? \rightarrow "hierarchy" ۲
 - Normal: v_1 is the lightest, just like the electron is the lightest charged lepton ullet
 - **Inverted:** v_3 is the lightest

Rencontres de Moriond EW. March 16, 2022

$$\nu_{\mu} \rightarrow \nu_{\mu}$$
 oscillations

• Probability of v_{μ} survival in a v_{μ} beam

$\rightarrow v_e$ oscillations in matter ν_{μ}

• Probability of
$$v_e$$
 appearance in a v_μ beam
 $P(\mu \rightarrow e) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^2$
 $\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos CP \mp \sin \Delta_{32} \sin \Delta_{32}$

- $v_{\mu} \rightarrow v_{e}$ depends on:
 - CP phase: δ_{CP}
 - Mass hierarchy and matter effects
 - Atmospheric parameters: $sin^2(\theta_{23})$, Δm^2_{32}
 - The smallest mixing angle: θ_{13}
 - Solar parameters: $sin^2(\theta_{12}), \Delta m^2_{12}$

Open Questions Disappearance Constraints Solar:

NOVA: $\nu_{\mu} \rightarrow \nu_{\mu}, \overline{\nu}_{\mu} \rightarrow \nu_{\mu}$ Reactor: $\overline{\nu}_e \rightarrow \overline{\nu}_e$ $\nu_e \rightarrow \nu_e$

pT extrapolation

- ND/FD containment difference.
- Split ND samples into 3 bins of transverse momentum and extrapolate separately.
- Reduce cross-section uncertainty by 30%. Overall systematics reduction is 10%.

GENIE tune (1)

Used GENIE 3.0.6 in NOvA 2020 analysis: choose the most theory-driven models and retune some parameters to better match ND data.

Process	Model
Quasielastic	Valencia 1p1h
Form Factor	Z-expansion
Multi-nucleon	Valencia 2p2h
Resonance	Berger-Sehgal
DIS	Bodek-Yang
Final State Int.	hN semi-classical

GENIE tune (2)

Largest tunes:

- Meson Exchange Current (MEC) or 2p2h): tune to **ND data**
- Final State Interactions (FSI): use external π -scattering data

NOvA Preliminary

Near Detector v_{μ} Spectra

NOvA Preliminary 2.5 Data Total Simulation Total Background 10⁶ Events / 11×10²⁰ POT Wrong Sign .5 v_{μ} 0.5 1.4 1.2 10⁶ Events / 11.8×10²⁰ POT \overline{v}_{μ} 0.8 0.6 0.4 0.2 2 3 Reconstructed L Energy [GeV]

Band around the MC shows the large impact of flux and cross-section uncertainties in only a single detector. We use this sample to predict both v_{μ}

<#>

- and v_e signal spectra at the Far Detector.
 - Appearing v_e 's are still v_{μ} 's at the ND

Rencontres de Moriond EW. March 16, 2022

Near Detector veliminary

- The ND v_e -like spectrum contains the **background** to the appearing v_e 's at the FD.
- Largest background is the irreducible v_e/v_e flux component.
 - 50% in neutrino-mode
 - 71% in antineutrino mode
- We use this sample to predict the background to v_e appearance.

Enhancing Sensitivity to Oscillations

- Sensitivity depends primarily on the shape of the energy spectrum.
- Bin by energy resolution \rightarrow • bin by hadronic energy fraction

- Sensitivity depends primarily on separating signal from background.
- Bin by *purity* \rightarrow bins of low & high PID
- Peripheral sample:
 - Captures high-PID events which might not be contained close to detector edges.
 - No energy binning.

Rencontres de Moriond EW. March 16, 2022

Extrapolating from Near to Far Detector

- Observe data-MC differences at the ND, use them to modify the FD MC.
 - Extrapolation performed in the analysis binning of energy + (resolution or PID).
- Significantly reduces the impact of uncertainties correlated between detectors
 - Especially effective at rate effects like the flux ($7\% \rightarrow 0.3\%$).