

Dark Matter searches at CMS and ATLAS

Danyer Pérez Adán

On behalf of the ATLAS and CMS collaborations

56th Rencontres de Moriond Electroweak Interactions & Unified Theories 15.03.2022 What is the nature of dark matter?

* various approaches to answer the question:

direct/indirect searches searches at colliders

Figure: Planck Collaboration

At the Large Hadron Collider ...

A non-exhaustive list of typical DM searches at the LHC

Dark Matter Searches

Covered in this talk ...

Monojet	1507.00966 (theo.), 2107.13021 , 2102.10874

... reducing model dependence by exploiting initial state radiation ...

Theoretical Scenarios

VH production of SM Higgs

Simpl. model: spin-1 mediator

Complex model: 2HDM+a

Experimental Signature: $p_T^{\text{miss}} + \text{jet}$

- triggering based on p_T^{miss}
 - normally requires high p_T^{miss} thresholds
 - removes dominant QCD multi-jet background
- \blacklozenge offline selection \blacklozenge
 - targets two types of jets:
 - $\star\,$ fat jets produced in $V \to q q$ decays
 - collimated hadrons from energetic quarks
 - machine learning used to 'V-tag'
 - $\star\,$ standard size jets
 - events with μ , e, τ , or γ are vetoed
 - large $\Delta \phi(\vec{p}_T^{\text{jet}}, \vec{p}_T^{\text{miss}})$ to avoid misreconstructed QCD jets

... Higgs not only provides mass, it could also serve as a portal into darkness ...

Simple Scenario: Additional scalar with mixing

q

 $\mathcal{L}(H,\phi,\chi) \supset \lambda(H^{\dagger}H)^{2} + \mu^{2}(H^{\dagger}H) + \lambda_{\phi}\phi^{4} + \mu_{\phi}^{2}\phi^{2} + \alpha H^{\dagger}H\phi^{2} + y_{\chi}\bar{\chi}\chi\phi$

Selection

q

 \blacklozenge combination of $p_T^{\rm miss}$ and VBF-like triggers employed \blacklozenge

- results in two different categories: moderate p_T^{miss} (VTR) and high p_T^{miss} (MTR)

 \blacklozenge offline selection targets the characteristic VBF kinematics \blacklozenge

- two jets in opposite detector hemispheres $\eta_{j_1} \cdot \eta_{j_2} < 0$
- large separation between the jets $|\eta_{jj}| > 1$ and substantial $\Delta \phi(\vec{p}_T^{\text{jets}}, \vec{p}_T^{\text{miss}})$
- events with charged leptons and photons are vetoed

- mono-Jet (CMS): $\mathcal{B}(H \to \text{Inv}) < 0.28 \ (0.25 \text{ exp})$
- mono-Z (ATLAS): $\mathcal{B}(H \to \text{Inv}) < 0.19 \text{ (0.19 exp)}$

 $\mathcal{B}(H \to \text{Inv}) < 0.15 \text{ (0.10 exp)} \text{ (ATLAS)}$

... Yukawa couplings will favor the invisible ones to be accompanied by the heaviest ones ...

Theoretical Scenarios: 2HDM+a

- $\circ~$ dominant single top final state when $H^{\pm} \to W^{\pm} a$ kinematically allowed
- $\circ~$ mainly targets the scenario of a boosted W^\pm boson from $H^\pm \to W^\pm a$ decays

Selection

- \blacklozenge triggering based on $p_T^{\rm miss} \blacklozenge$
- single-lepton triggers used for auxiliary selections in the estimation of background

 \blacklozenge offline selection targets two main categories: 0l and $1l \blacklozenge$

tW_{0l}

- \triangleright high p_T^{miss} in the event
- ▷ no presence of leptons (e or μ)
- \triangleright at least 4 standard jets
- \triangleright at least 1 b-tagged jet
- \triangleright one W-tagged fat jet

\triangleright high p_T^{miss} in the event

- \triangleright exactly one lepton (e or μ)
- $\triangleright\,$ at least 1 b-tagged jet

 $t(\rightarrow l\bar{\nu}_l b)W(\rightarrow qq')$

- \triangleright at least 2 standard jets
- $\triangleright\,$ one W-tagged fat jet

$t(\rightarrow qq'b)W(\rightarrow l\bar{\nu}_l)$

 \triangleright at least 3 standard jets

Experimental Searches

Final Discriminant

$\blacklozenge p_T^{\rm miss}$ distribution \blacklozenge

- 0l and $1l_{t(\rightarrow qq'b)W(\rightarrow l\bar{\nu}_l)}$ SRs split in 5 p_T^{miss} bins
- $1l_{t(\rightarrow l\bar{\nu}_{l}b)W(\rightarrow qq')}$ SR kept in only 1 $p_{T}^{\rm miss}$ bin

Background Estimation

• main sources are W + Jets, $t\bar{t}$, Z + Jets, and $t\bar{t}Z$ • dedicated control regions targeting normalizations •

0l and 1l channels statistically combined with 2l (2011.09308) channel

 \dots not only the visible sector deserves an explanation of how the mass was acquired \dots

Experimental Searche

Dark Higgs 1606.07609 (theo.), CMS-EXO-20-013, 2010.06548

Theoretical Model

W

- \circ additional U(1)' local gauge symmetry
- $\circ~U(1)'~broken$ by introducing complex scalar $(s\leftrightarrow Z~{\rm interaction})$
- $\circ~$ SM particles interact with s through $s\leftrightarrow H~mixing$
- specify how mediator and DM get their mass (as opposed to Simpl.)

Signature for dileptonic W^+W^- decay: $l\bar{l} + p_T^{\text{miss}}$

- \blacklozenge single-lepton and di-lepton triggers used \blacklozenge
- boosting in leptons for some mass configurations

 \blacklozenge offline selection uses leptons and $p_T^{\rm miss} \blacklozenge$

- 2 opposite-charge leptons with different flavor (reduce Z + Jets)
- events with b-tagged jet are vetoed (reduces $t\bar{t}\ \&\ tW)$
- key variable is the transverse mass $m_T^{l_{min}, p_T^{\text{miss}}}$

$$m_T^{l_{min}, p_T^{\text{miss}}} = \sqrt{2p_T^{l_{min}} p_T^{\text{miss}} \left[1 - \cos \Delta \phi(\vec{p}_T^{l_{min}}, \vec{p}_T^{\text{miss}})\right]}$$

Dark Higgs

Final Discriminant

• 2D
$$m_{ll}$$
 vs $m_T^{l_{min}, p_T^{miss}}$ distribution •

- signal region further categorized according $\Delta R(\bar{l},l)$
- accounts for different signal boosting regimes

unrolled 2D distribution \Rightarrow

Background Estimation

 \blacklozenge mainly from simulation, normalizations in CRs \blacklozenge

- can probe Z' masses up to 2TeV

15.03.2022 16/22

 \dots hidden intricate dynamics can produce truly distinctive signatures \dots

Theoretical Models

- $\circ\,$ hidden sectors with strong dynamics (analogous to QCD)
- $\circ~$ possibility of compositeness with stable (DM candidate) and unstable 'dark hadrons'
- unstable dark hadrons can decay to visible hadrons through the portal coupling

Signature: two highly energetic jets

\blacklozenge triggering based on jets \blacklozenge

\blacklozenge offline selection \blacklozenge

- $\begin{array}{l} \ \mathrm{low} \ \Delta \phi_{\min} = \min[\Delta \phi(\vec{p}_{j_1,j_2},\vec{p}_T^{\mathrm{miss}})] \\ (\mathrm{previous \ searches \ imposed \ an} \\ \mathrm{inverted \ cut \ to \ avoid \ fake \ } p_T^{\mathrm{miss}}!) \end{array}$
- high $R_T = p_T^{\text{miss}}/m_T$ (used to uncorrelate $p_T^{\text{miss}} \leftrightarrow m_T$)
- key distribution:

$$m_T^2 = m_{jj}^2 + 2p_T^{\text{miss}} \left[E_{T_{jj}} - p_{T_{jj}} \cos(\phi) \right]$$

- designed to reduce even further the background
- targets differences between semivisible jets and SM jets
- 15 input variables are combined in a BDT
 - exploit quantities related to jet-substructure
 - accounts for variations in signal $(r_{Inv}, m_{Z'}, m_{dark})$
 - chosen WP (0.55) rejects (accept) around 85% (87%)

number of events

10 Data-Fit σ_{exp}

Final Discriminant

- dijet transverse mass m_T •
- selection categorized according to R_{τ} (low and high)

Background Estimation

analytic smoothly falling function \blacklozenge

$$g(x) = e^{p_1 x} x^{p_2 [1+p_3 \ln(x)]}$$

- parameters (p_i) and normalization freely floating in the final fit

High-SVJ2

 $r^{2} / n_{rog} = 10.3 / 14$

+ Data

Experimental Searches

Results

- large improvement vs analysis without BDT identification of semivisible jets
- excluding $1.5 \lesssim m_{Z'} \lesssim 5$ TeV for $r_{Inv} = 0.3$
- $\circ \ excluding \ 0.01 \lesssim r_{Inv} \lesssim 0.77 \ for \\ m_{dark} = 20 \ GeV$
- small excess around $m_{Z'} = 3.5 \ TeV$ with no real significance (~ 2σ local)

Summary

- large variety of interesting signatures being covered by ATLAS and CMS
 - dedicated analyses for specific final states
 - optimized for a wide range of model types
- * experimental techniques evolving to more sophisticated approaches
 - use of machine learning is consolidating bringing substantial improvements
 - o increase on importance of having good control of systematic uncertainties
- * still more searches to be ready in the near future with full RunII data
 - $\circ~$ improvements expected also from adding channels previously not considered
- \circledast no signal observed yet, but many new searches planned

For more results: CMS/ATLAS

- \circledast large variety of interesting signatures being covered by ATLAS and CMS
 - dedicated analyses for specific final states
 - optimized for a wide range of model types
- \circledast experimental techniques evolving to more sophisticated approaches
 - $\circ~$ use of machine learning is consolidating bringing substantial improvements
 - $\circ~$ increase on importance of having good control of systematic uncertainties
- \circledast still more searches to be ready in the near future with full RunII data
 - $\circ~$ improvements expected also from adding channels previously not considered
- \circledast no signal observed yet, but many new searches planned

For more results: CMS/ATLAS

Thanks for your attention!

Backup

Requirement	SR	$W \rightarrow \mu \nu$	$Z \rightarrow \mu \mu$	$W \rightarrow ev$	$Z \rightarrow ee$	Тор
Primary vertex	at least one with ≥ 2 associated tracks with $p_T > 500 \text{ MeV}$					
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$		single-electron		E ^{mss} _T , single- electron	
$p_{\rm T}^{\rm recoil}$ cut	$E_{T}^{miss} > 200 \text{GeV}$	$ \mathbf{p}_{T}^{miss} + \mathbf{p}_{T}(\mu) > 200 \text{ GeV}$	$ \mathbf{p}_{T}^{miss} + \mathbf{p}_{T}(\mu\mu) > 200 \text{ GeV}$	$ \mathbf{p}_{T}^{miss} + \mathbf{p}_{T}(e) > 200 \text{ GeV}$	p _T ^{miss} + p _T (<i>ee</i>) > 200 GeV	$\begin{array}{l} {\bf p}_{\rm T}^{\rm miss} + \\ {\bf p}_{\rm T}(\mu) > \\ 200 {\rm GeV} {\rm or} \\ {\bf p}_{\rm T}^{\rm miss} + \\ {\bf p}_{\rm T}(e) > \\ 200 {\rm GeV} \end{array}$
Jets		up	to 4 with $p_T >$	$30 \text{GeV}, \eta < 1$	2.8	
$ \Delta \phi(\text{jets}, \mathbf{p}_T^{\text{recoil}}) $		> 0.4	> 0.6 if 200 Ge	$V < E_T^{miss} \le 25$	60 GeV)	
Leading jet		p _T >	 150 GeV, η 	: 2.4, f _{ch} /f _{max} :	> 0.1	
b-jets	any	none	any	none	any	at least one
Electrons or muons	none	exactly one muon, with $p_T >$ 10 GeV, 30 < $m_T <$ 100 GeV; no electron	exactly two muons, with $p_T >$ 10 GeV, 66 < $m_{\mu\mu} <$ 116 GeV; no electron	exactly one electron, tight, with $p_T >$ 30 GeV, $ \eta \notin$ (1.37, 1.52), tight isolation, $30 < m_T <$ 100 GeV; no muon	exactly two electrons, with p _T > 30 GeV, 66 < m _e < 116 GeV; no muon	same as for $W \rightarrow \mu \nu$ or same as for $W \rightarrow e\nu$
τ -leptons	none					
Photons	none					

Source of uncertainty and effect on the total SR background estimate [%]			
Flavor tagging	0.1 - 0.9	τ -lepton identification efficiency	0.1 - 0.07
Jet energy scale	0.17 - 1.0	Luminosity	0.01 - 0.05
Jet energy resolution	0.15 - 1.3	Noncollision background	0.2 - 0.0
Jet JVT efficiency	0.01 - 0.03	Multijet background	1.0 - 0.0
Pileup reweighting	0.4 - 0.24	Diboson theory	0.01 - 0.22
E _T ^{miss} resolution	0.34 - 0.04	Single-top theory	0.13 - 0.28
Emiss scale	0.5 - 0.25	tī theory	0.06 - 0.7
Electron and photon energy resolution	0.01 - 0.08	V+jets τ -lepton definition	0.04 - 0.16
Electron and photon energy scale	0.3 - 0.7	V+jets pure QCD corrections	0.24 - 1.1
Electron identification efficiency	0.5 - 1.0	V+jets pure EW corrections	0.17 - 2.2
Electron reconstruction efficiency	0.15 - 0.2	V+jets mixed QCD-EW corrections	0.02 - 0.7
Electron isolation efficiency	0.04 - 0.19	V+jets PDF	0.01 - 0.7
Muon identification efficiency	0.03 - 0.9	VBF EW V+jets backgrounds	0.02 - 1.1
Muon reconstruction efficiency	0.4 - 1.5	Limited MC statistics	0.05 - 1.9
Muon momentum scale	0.1 - 0.7		
Total background uncertainty in the Signal Region: 1.5%-4.2%			

	Monojet
--	---------

	CMS	ATLAS
$p_T^{ m miss}$	$> 250 { m ~GeV}$	$> 200 { m ~GeV}$
number of p_T^{miss} bins	22	13
categories	mono-jet, mono-V	mono-jet
control regions	5 $(2 \times W, 2 \times Z, 1 \times \gamma)$	5 $(2 \times W, 2 \times Z, 1 \times t)$
$\mathcal{B}(h o \mathrm{Inv})$	$< 0.28 \ (0.25 \ \text{exp})$	$< 0.34 \ (0.39 \ \text{exp})$

	k:		
		Р.	

 $H \rightarrow Inv$

	Impact on $\mathcal{B}(H \to inv)$		
Group of systematic uncertainties	Observed	Expected	
Theory	$^{+0.026}_{-0.025}$	± 0.024	
Simulated event count	± 0.022	$^{+0.021}_{-0.022}$	
Triggers	$^{+0.018}_{-0.019}$	± 0.018	
Jet calibration	$^{+0.014}_{-0.012}$	± 0.011	
QCD multijet mismodelling	± 0.012	± 0.013	
Leptons/photons/b-tagged jets	$^{+0.011}_{-0.010}$	$^{+0.009}_{-0.010}$	
Integrated luminosity/pileup	± 0.004	± 0.004	
Other systematic uncertainties	$^{+0.013}_{-0.009}$	±0.009	
Statistical uncertainty	± 0.028	± 0.028	

в			

	CMS	ATLAS
final discriminant	m_{jj} (2 cat.: MTR & VTR)	3D binning (16) in $[n_j, m_{jj}, \Delta \phi(j, j)]$
$p_T^{ m miss}$	$> 160 { m ~GeV}$	$> 160 { m ~GeV}$
$ \Delta \eta_{jj} $	> 1	> 3.8
$\Delta \phi_{jj}$	< 1.5(1.8)	< 2
control regions	V+Jets, QCD	V+Jets, QCD
$\mathcal{B}(h \to \text{Inv})$	$< 0.18 \ (0.10 \ exp)$	$< 0.15 \ (0.10 \ \text{exp})$

Binning: $p_T^{\text{miss}} = [250, 330, 400, 500, 600, \text{inf}] \text{ GeV}$

Quantity	Selection
Number of leptons	2
Lepton flavors	еμ, μе
Lepton charges	Opposite
Additional leptons	0
$p_{\mathrm{T}}^{\ell\mathrm{max}}$	> 25
$p_{\rm T}^{\ell{\rm min}}$	> 20
$m_{\ell\ell}$	> 12
$p_{\mathrm{T}}^{\ell\ell}$	> 30
$p_{\rm T}^{\rm miss}$	> 20
p ^{miss} T.proi	> 20
ll_{r}	> 50
$\Delta \dot{R}_{\ell\ell}$	< 2.5
Number of b-tagged jets	0

Binning: $m_T^{l_{min}, p_T^{\text{miss}}} = [0, 50, 90, 130, 160, \text{inf}] \text{ GeV}$ vs $m_{ll} = [12, 60, 90, 120, \text{inf}] \text{ GeV}$

 $\star\,$ comparable impact between statistical and systematic uncertainties

Backup

Semi-visible Jets

Scan	<i>m</i> _{Z'} [TeV]	m _{dark} [GeV]	$r_{\rm inv}$	α_{dark}
1	1.5–5.1	1-100	0.3	$\alpha_{ m dark}^{ m peak}$
2	1.5–5.1	20	0–1	$\alpha_{ m dark}^{ m peak}$
3	1.5-5.1	20	0.3	$\alpha_{\rm dark}^{\rm low} - \alpha_{\rm dark}^{\rm high}$

Uncertainty	Yield effect [%]
Integrated luminosity	1.6
Jet energy corrections	0.05 - 12
Jet energy resolution	0.02-2.3
Jet energy scale	0.29-21
PDF	0.0-5.3
Parton shower FSR	0.07 - 9.4
Parton shower ISR	0.0-2.9
Pileup reweighting	0.0-1.3
Renormalization and factorization scales	0.0-0.12
Statistical	1.2-4.9
Trigger control region	0.24-0.40
Trigger efficiency	2.0
Total	3.3–22

Figure: Signal uncertainties

 \star impacts dominated by fit function parameter uncertainties

• largest one is from background normalization (unconstrained pre-fit)