

The Muon g – 2 Experiment at Fermilab

Kevin Labe, on behalf of the Muon g-2 Collaboration Cornell University 56th Rencontres de Moriond

In partnership with:

‡ Fermilab

Experimental Principle

Fermilab

‡ Fermilab

‡ Fermilab

Field measurement

Trolley can access storage volume and is directly sensitive to field moments

Fixed probes interpolate field moments between trolley runs

Run 1 Results

 $a_{\mu}(Exp) - a_{\mu}(BMW) = 920 \pm 600 \text{ ppb}$

Run 1 Error Budget

4 Fermilab

Run-2 and Run-3 analysis proceeding

Expected statistical uncertainty ~200 ppb

Nominal Positive 1-Step Nominal Positive 2-Step Nominal Beam Arrival Time Nominal Precession Fit Start Time

200

250

300

esistor 17

150

Replaced Quadrupole HV resistors

Calo acceptance effects create a phase shift as a function of decay position

This couples to beam changes to bias the observed frequency

/oltage [kV]

18

16

10

50

100

0

Quadrupole field transient

Mechanical vibration of pulsed quad plates drive field perturbations

Measured with dedicated probes

Now measured in both time and space

Stronger Kick

Reduced CBO oscillation

Run3NO : Station 12

Muon g – 2 Collaboration

Thanks to my wonderful collaborators around the world

60 years of g_{μ}

Data Analysis

Changes to quad and kicker settings

4 Run-1 data sets

April – June 2018

~6% of statistics target

Run-1	Tune	Kicker	Fills	Positrons
Subset	(n)	(kV)	(10^4)	(10^9)
1a	0.108	137	151	0.92
1b	0.120	137	196	1.28
1c	0.120	130	333	1.98
1d	0.107	125	733	4.00

3 Kinds of Blindness Hardware blind (± 25 ppm clock detuning) Software blind (± 25 ppm) global or analysis-specific

59940 59960 59980 60000 60020 60040 60060 Two clustering strategies: local, global

Template fitting of digitized SIPM waveforms

Muon precession measurement

辈 Fermilab

 $\frac{1}{\langle \omega_p^{\prime}(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$

 $f_{\rm clock} \, \omega_a^m$

Simple model leaves out much detail

 $\frac{f_{\text{clock}}(\omega_a^m)(1+C_e+C_p+C_{ml}+C_{pa})}{\frac{1}{16} \langle \omega_p'(x,y,\phi) \times M(x,y,\phi) \rangle (1+B_k+B_q)}$

Muon precession measurement

Five-Parameter T-Method Fit

 $\frac{\chi^2}{ndf} = 9500/4150$

4000^{×10³}

N / 149 ns

pull

辈 Fermilab

FFT of fit residuals

Muon precession measurement

Muon precession measurement

$f_{ m clock}$ ω	$\mathcal{L}_a^m \left[1 + C_e + C_p + C_{ml} + C_{pa} \right]$
$f_{\text{calib}} \langle \omega_p'(x) \rangle$	$(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)$

			R [ppm] for each	dataset		Naïve R
Recon.	Method	Pileup	Run-1a	Run-1b	Run-1c	Run-1d	average [ppm]
global	A	empirical	-82.98 ± 1.21	-81.70 ± 1.03	-82.30 ± 0.82	-82.34 ± 0.68	-82.30 ± 0.43
local	A	shadow	-83.23 ± 1.20	-81.77 ± 1.02	-82.35 ± 0.82	-82.48 ± 0.67	-82.41 ± 0.43
local	A	shadow	$\textbf{-83.17} \pm \textbf{1.21}$	$\textbf{-81.84} \pm \textbf{1.03}$	$\textbf{-82.50} \pm \textbf{0.83}$	-82.45 ± 0.68	-82.44 ± 0.44
local	A	pdf	$\textbf{-83.39} \pm 1.22$	-81.72 ± 1.04	-82.32 ± 0.83	-82.42 ± 0.68	-82.39 ± 0.44
local	Т	shadow	-83.55 ± 1.36	-81.80 ± 1.16	$\textbf{-82.67} \pm \textbf{0.93}$	-82.45 ± 0.76	-82.54 ± 0.49
global	Т	empirical	-82.96 ± 1.34	-81.96 ± 1.14	-82.77 ± 0.91	-82.47 ± 0.75	-82.52 ± 0.48
local	\mathbf{T}	shadow	-83.64 ± 1.33	-81.83 ± 1.12	-82.64 ± 0.91	-82.63 ± 0.74	-82.62 ± 0.48
local	Т	shadow	$\textbf{-83.49} \pm \textbf{1.34}$	-81.75 ± 1.13	-82.64 ± 0.91	-82.42 ± 0.75	-82.50 ± 0.48
local	Т	pdf	-83.37 ± 1.33	-81.76 ± 1.13	-82.65 ± 0.91	-82.47 ± 0.74	-82.51 ± 0.48
local	R	shadow	$\textbf{-83.72} \pm \textbf{1.36}$	-81.96 ± 1.16	$\textbf{-82.67} \pm \textbf{0.93}$	-82.52 ± 0.76	-82.62 ± 0.49
n/a	\mathbf{Q}	n/a	-83.96 ± 2.07	-79.70 ± 1.76	-81.03 ± 1.45	-82.74 ± 1.29	-81.82 ± 0.78

11 (highly correlated) analyses found consistent results4 most precise analyses averaged

conservative procedure that avoids unrealistic reduction in statistical uncertainty

🛟 Fermilab

Systematic concerns

Main concern is "early-to-late" effects coherent from one fill to the next

Canonical example is a slow change of phase, e.g. from a drifting energy calibration

$$\cos(\omega t + \varphi) = \cos\left(\left(\omega + \frac{d\varphi}{dt}\right)t + \varphi_0\right)$$

Muon precession systematics

 $\frac{f_{\text{clock}}(\omega_a^m)(1+C_e+C_p+C_{ml}+C_{pa})}{f_{\text{calib}} \langle \omega_p'(x,y,\phi) \times M(x,y,\phi) \rangle (1+B_k+B_q)}$

‡ Fermilab

Dataset	Run-1a	Run-1b	Run-1c	Run-1d
Gain (ppb)	12	9	9	5
Pileup (ppb)	39	42	35	31
CBO (ppb)	42	49	32	35
Randomization (ppb)	15	12	9	7
Early-to-late effect (ppb)	21	21	22	10
TOTAL (ppb)	64	70	54	49

Muon precession measurement

Fit frequency independent of...

Fit start time Calorimeter station Bunch number ∝ Run number Time of day Energy bin Position within calorimeter

fit start time $[\mu s]$

 $\frac{f_{\text{clock}}(\omega_a^m)(1+C_e+C_p+C_{ml}+C_{pa})}{f_{\text{calib}} \langle \omega_p'(x,y,\phi) \times M(x,y,\phi) \rangle (1+B_k+B_q)}$

Field measurement

 $\frac{f_{\text{clock}} \,\omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \,(\omega_p')^c , y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$

Field moments between trolley runs interpolated with fixed probe data

Random walk (Brownian bridge) model

Field measurement

Muon beam moments estimated with tracker

Field and beam intensity folded at 10s scale

Field and beam moments folded at hourly scale

🛟 Fermilab

 $f_{\text{clock}} \,\omega_a^m \left(1 + C_p + C_p + C_{ml} + C_{pa}\right)$

 $f_{\text{calib}} \langle \omega'_p(x, y, \phi) \rangle M(x, y, \phi) \rangle (1 + B_k + B_q)$

‡ Fermilab

Field systematics

 $\frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \ \langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$

Dataset	Run-1a	Run-1b	Run-1c	Run-1d
Field Tracking	43	34	25	22
Trolley Calibration	28	28	28	28
Trolley Temperature	28	25	21	15
Trolley Baseline	25	25	25	25
Muon Weighting	11	14	16	20
Absolute Calibration	13	13	13	13
Fixed Probe Baseline	8	8	8	8
Fixed Probe Runs	1	1	1	1
TOTAL	70	60	54	52

Da

Cor

E Field and Pitch Corrections

taset	Run-1a	Run-1b	Run-1c	Run-1d
ction b]	471 ± 53	464 ± 54	534 ± 54	475 ± 53

 $C_p = \frac{n}{2} \frac{\langle y^2 \rangle}{R_0^2} = \frac{n}{4} \frac{\langle A^2 \rangle}{R_0^2}$

(b)

🛟 Fermilab

 $\frac{f_{\text{clock }}\omega_a^m \left(1 + C_e \right) C_p + C_{ml} + C_{pa}}{f_{\text{calib }} \langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$

Amplitude Fit

Width/Acceptance Correction

Muon Losses

p-phase correlation

+ preferential loss of low-p muons= bias

Run-1b Run-1c Run-1d Run-1a **Dataset** -17 ± 6 Correction -14 ± 6 -3 ± 2 -7 ± 4 [ppb] Relative Phase [mrad] 15F **Usual Beam** Arb. Units 10 0 -5 Data -10 Data Fit -15F Simulation [68% CL] -1.5 -0.5 0 0.5 -1 1.5 1 Δp/p₀ [%]

Fermilab

Full fit function

$$F(t) = N_{0} \cdot N_{x}(t) \cdot N_{y}(t) \cdot \Lambda(t) \cdot e^{-t/\gamma \tau_{\mu}} \cdot [1 + A_{0} \cdot A_{x}(t) \cdot \cos(\omega_{a}t + \phi_{0} \cdot \phi_{x}(t))]$$

$$N_{x}(t) = 1 + e^{-1t/\tau_{CBO}} A_{N,x,1,1} \cos(1\omega_{CBO}t + \phi_{N,x,1,1}) + e^{-2t/\tau_{CBO}} A_{N,x,2,2} \cos(2\omega_{CBO}t + \phi_{N,x,2,2}), (27)$$

$$N_{y}(t) = 1 + e^{-1t/\tau_{y}} A_{N,y,1,1} \cos(1\omega_{y} t + \phi_{N,y,1,1}) + e^{-2t/\tau_{y}} A_{N,y,2,2} \cos(1\omega_{VW} t + \phi_{N,y,2,2}), (28)$$

$$A_{x}(t) = 1 + e^{-1t/\tau_{CBO}} A_{A,x,1,1} \cos(1\omega_{CBO}t + \phi_{A,x,1,1}), (29)$$

$$\phi_x(t) = 1 + e^{-1t/\tau_{\rm CBO}} A_{\phi,x,1,1} \cos(1\omega_{\rm CBO} t + \phi_{\phi,x,1,1}).$$
(30)

Asymmetry method

Asymmetry estimated from the data

Weighting each count by A(E) known to be most sensitive approach

‡ Fermilab

Ratio method

Integrated energy method

Independent data set, only 50% correlated

Very different systematics

Shorter data collection period, lower statistical precision

Pileup in time

Four dataset results

External Constants

- 1. Proton to electron magnetic moment ratio W.D. Phillips, W.E. Cooke, D. Kleppner, Metrologia 13 179 (1977)
- 2. Electron magnetic moment D. Hanneke, S.F. Hoogerheide, G. Gabrielse, Phys. Rev. A 83 052122 (2011)
- 3. Muon to electron mass ratio
 W. Liu et al., PRL 82 711 (1999) (muonium hyperfine splitting)
- 4. H bound state electron magnetic moment (from QED) P.J. Mohr, D.B. Newell, B.N. Taylor, Rev. Mod. Phys. 88(3):035009 (2016)

