BSM H searches and rare **H** decay searches

- Millions of Higgs bosons have now been produced at the LHC, enabling:
 - Measurement of m_H to nearly per-mille precision.
 - Observation of all third-generation H couplings.
 - Detailed measurements of H properties (differential, STXS, CP, ...)
- This unprecedented data set opens a *new* window in exploration of H sector:
 - **Rare H decays** ($H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$, $H \rightarrow cc$, $H \rightarrow ee$,...)
 - Exotic H decays ($H \rightarrow invisible$, $H \rightarrow aa$, $H \rightarrow X+quarkonia ...$)
 - Extended H sector (MSSM, ...)

Constraining the Higgs-charm Yukawa

- Measuring Yukawa interactions beyond third generation is critical test of Higgs sector.
- Measuring H→cc at the LHC is extremely challenging:
 - Multijet background larger by many (~9!) orders of magnitude.
 - Charm jet tagging is very difficult.
- Today I highlight new results from CMS searching for H→cc in VH production (most sensitive channel).
 - ATLAS results covered this morning in dedicated talk by V. Dao.

- Huge effort to make the most of the data collected:
 - Very large improvement in *c-tagging** performance with respect to previous taggers.
 - Deep neural network-based *regression* to estimate resolved charm-jet p_T.
 - Graph neural network-based *regression* to estimate cc-jet mass.
 - *Kinematic fit* in resolved 2-lepton channel to better constrain H→cc candidate mass.

Novel method to calibrate charm jet taggers: <u>arXiv:2111.03027</u>, accepted for publication in J. Instrum.

*including the first application of graph neural networks to jet tagging: <u>Phys. Rev. D 101, 056019 (2020)</u>

13/

Stephane Cooperstein

ullet

Moriond EW 2022

Putting it all together: $H \rightarrow cc$ results

NEW 2022!

- Observed

····· SM expected

- Measurements of [W/Z]Z→cc signal demonstrates reliability of methods in data.
- Contraints on y_c comparable to what had previously been expected at end of HL-LHC!

13/03/2022

σ

CMS

Preliminary

Putting it all together: $H \rightarrow cc$ results

NEW 2022!

- Measurements of [W/Z]Z→cc signal demonstrates reliability of methods in data.
- Contraints on y_c comparable to what had previously been expected at end of HL-LHC!
- Updated projections for HL-LHC:
 - With these results, a huge step forward towards measuring H→cc at the HL-LHC!

$BR(H\rightarrow cc) < 14$ (8) x SM @95% C.L.

Stephane Cooperstein

- $H \rightarrow ee$ only direct probe of Higgs-electron Yukawa.
 - SM prediction for BR(H \rightarrow ee) ~ 5 * 10⁻⁹.
 - \Rightarrow H \rightarrow ee signal observation at the LHC would be a clear sign of BSM physics in Higgs sector.
- Dedicated MVA categories targeting gluon-fusion and vector boson fusion (VBF) H production modes.
- Multivariate classifiers used to isolate regions of high expected signal purity.

Stephane Cooperstein

Moriond EW 2022

NEW FOR MORIOND!

13/03/2022

$H \rightarrow ee: results$

NEW FOR MORIOND!

- Parametric fits to m_{ee} distribution simultaneously across MVA categories .
- No significant excess above background-only expectation \Rightarrow best limit to date on BR(H \rightarrow ee).
- Upper limit on BR(H→ee) scanned as a function of m_H.

Most sensitive

Most sensitive VBF category CMS Preliminary 138 fb⁻¹ (13 TeV) 50 H \rightarrow ee, m_H = 125.38 GeV \downarrow Data VBF Tag 0 \rightarrow S+B fit B (H \rightarrow ee) = 3.0 x 10⁴ $\pm 1 \sigma$ $\pm 2 \sigma$

BR(H→ee) < 3.0 (3.0 exp.) * 10⁻⁴ @95% C.L.

Stephane Cooperstein

Moriond EW 2022

9

Higgs sector and BSM

- *Higgs sector* plays an integral role in many BSM models:
 - As a mediator to hidden sectors (dark matter?)
 - Through interactions with mediator (dark photon, additional singlet, ...)
 - With additional Higgs bosons with mass near electroweak scale (e.g. MSSM).
- Very large and diverse search program pursued by both ATLAS and CMS.

Stephane Cooperstein

Boosted $h \rightarrow aa \rightarrow 4\gamma$

NEW FOR MORIOND!

- New search for $h \rightarrow aa \rightarrow 4\gamma$ at very low mass (0.1 < m_a < 1.2 GeV).
- Photon energy deposits are merged in calorimeter ⇒ novel end-to-end deep learning algorithm to identify merged a→2γ candidates.
- Search is also sensitive to displaced signatures up to $c\tau \sim 10mm$.

Stephane Cooperstein

Search for $\phi \rightarrow \tau \tau$

NEW FOR MORIOND!

- The ττ final state is a key channel in search for additional particles in H sector
 - Background many orders of magnitude smaller than bb final state.
 - Larger mass \Rightarrow larger couplings, gives advantage with respect to $\mu\mu$ searches.
- Search for resonance in $\tau\tau$ (gluon-fusion and bb ϕ)
 - "low mass": 60 GeV < m_{φ} < 250 GeV
 - "high mass": 250 GeV < m_{φ} < 3.5 TeV

Search for $\phi \rightarrow \tau\tau$: results

NEW FOR MORIOND!

- Combination of $e\mu$, $\mu\tau_h$, $e\tau_h$, and $\tau_h\tau_h$. channels.
- Two localized excesses observed:
 - At 100 GeV, local significance: 3.1 \sigma
 - Considering LEE within low mass search range $\Rightarrow 2.7\sigma$
 - At 1.2 TeV in ggd regions, local significance: 2.80
 - Considering LEE within high mass search range $\Rightarrow 2.4\sigma$
- Intriguing, but we need more data.

Stephane Cooperstein

Moriond EW 2022

Jet→τ_ь

Others

Bkg. unc.

bbø @ 1.0 fb

(m = 1.2 TeV)

m_Ttot (GeV)

13/03/2022 13

Extending the physics reach to VLQ

NEW FOR MORIOND!

- *New for this analysis*: search for non-resonant signature of t-channel leptoquark exchange.
 - Presence of VLQ would lead to enhancement in nonresonant production rate at high $\tau\tau$ invariant mass.
- Expected limits well within preferred region for B physics anomalies.
 - Slight excess observed in data, so constraints are weaker than expected.
- Something to keep in mind: high-mass ($\sim 1.2 \text{ TeV}$) excess driven by 0 b-jet category, which is not favored by VLQ model.
 - VLQ signal contribution primarily expected in region requiring b-tagged jets.

H→WW high mass search

NEW FOR MORIOND!

- Search for resonances in WW mass from 115 GeV to 5 TeV.
 - Separate categories for gluon-fusion and VBF production.
 - Combination of searches in $e\mu$, $\mu\mu$, and $e\mu$ final states.
 - Deep neural networks developed to:
 - Define high signal purity categories (classification)
 - Estimate signal resonance mass (regression)

Stephane Cooperstein

Moriond EW 2022

13/03/2022

$H \rightarrow WW$ high mass search: results

NEW FOR MORIOND!

- Many interpretations provided:
 - Model-independent, for range of width hypotheses.
 - MSSM (six scenarios in total).
 - Two Higgs Doublet Models (THDM).
- Largest excess over background observed near 650 GeV, with local (global) significance of 3.8σ (2.6 σ).
 - Excess is concentrated in vector boson fusion categories.
 - Something to keep an eye on!

Stephane Cooperstein

Search for $H^{\pm} \rightarrow HW^{\pm}$, $H \rightarrow \tau\tau$

• Combination of $e\tau_h$, $\mu\tau_h$, $e\tau_h\tau_h$, and $\mu\tau_h\tau_h$ final states

- 43% of total branching fraction.
- In $e\tau_h$ and $\mu\tau_h$ channels, perform fit to output of MVA classifier.
- In $e\tau_h\tau_h$ and $\mu\tau_h\tau_h$ channels, fit traverse mass of charged H candidate.
- Hadronic decays of top quark identified with massdecorrelated neural network tagger.
- No significant excess observed \Rightarrow limits set on σ^*BR for $H^{\pm} \rightarrow HW^{\pm}$, $H \rightarrow \tau\tau$ from 20 fb to 80 fb.

13/03/2022

17

NEW FOR MORIOND!

Stephane Cooperstein

Summary

- We are just beginning to explore many aspects of the H sector:
 - Yukawa interactions beyond the third generation, Higgs self-interaction, Higgs as a mediator to dark matter, additional H bosons up to TeV scale...
- Enormous progress made in the past year:
 - Huge step forward in path to potentially measuring $H \rightarrow cc$ at the HL-LHC.
 - Multiple novel reconstruction methods and analysis improvements using ML.
- A bright future ahead for Run-3 and beyond!

Additional Material

Stephane Cooperstein

H Rare Decays

L'stended H sector

Results not shown

13/03/2022

20

- Unfortunately there were quite a few additional results, new since Moriond 2021, that could not be shown today in either my talk or Reina's this morning.
- Priority was given to the newest results.
- H→ $Z\gamma$: <u>CMS-PAS-HIG-19-014</u> October 2021 H Etolic Decays Exotic $h \rightarrow XX \rightarrow 41$ decays: October 2021 ATLAS: arXiv:2110.13673, accepted by JHEP CMS: arXiv:2111.01299, accepted by EPJC November 2021 $H \rightarrow bb + p_T^{miss}$: <u>JHEP 01 (2022) 063</u> (ATLAS) $H \rightarrow \gamma \gamma + p_T^{miss}$: <u>JHEP 10 (2021) 13</u> (ATLAS) Summer. t \rightarrow H[±]b, H[±] \rightarrow cb: <u>ATLAS-CONF-2021-037</u> Spring H^{\pm} →aW[±],a→μμ: <u>ATLAS-CONF-2021-047</u>
 - VBF H[±] \rightarrow VV: <u>Eur. Phys. J. C 81 (2021) 723</u> (CMS)

Charm jet tagging

- Jets originating from charm quarks have properties intermediate between udsg and b jets \Rightarrow difficult to isolate.
 - Enormous effort to maximize charm jet tagging performance in Run-2:
 - Using latest developments in machine learning*.
 - Exploring multiple jet topologies, including large-radius jets.
- Dedicated calibrations performed with data.

"Resolved" jet c-tagger (vs. udsg and vs. b)

arXiv:2111.03027, accepted for publication in J. Instrum.

"Merged" jet cc-tagger (vs. bb, qq, ...) (13 TeV)

*including the first application of graph neural networks to jet tagging: <u>Phys. Rev. D 101, 056019 (2020)</u>

Stephane Cooperstein

Moriond EW 2022

- SM B(H \rightarrow Z γ) = 1.6*10⁻³
- Ratio between $H \rightarrow Z\gamma$ and $H \rightarrow \gamma\gamma$ potentially sensitive to BSM.
- Select Z→µµ and Z→ee events with additional photon and use MVA categorize events.
- Parametric fit to $m_{ll\gamma}$ to extract signal.
- Statistically limited measurement ⇒ Run-3 data critical to pinpoint this potential signal.

ATLAS Run-2 result: 2.2σ (1.1 σ) obs. (exp.)

Phys. Lett. B 809 (2020) 135754

Stephane Cooperstein

Moriond EW 2022

13/03/2022

H→invisible

- SM prediction for $H \rightarrow ZZ^* \rightarrow 4\nu \sim 0.1\%$
- BR(H→invisible) can be highly enhanced under various BSM models, including Higgs portal models where H serves as mediator between SM particles and dark matter.
- Challenging experimental signature of missing E_T and additional (mainly hadronic) objects.
- VBF H production is the most sensitive H→invisible channel, balancing production rate with experimental challenges.

Stephane Cooperstein

Moriond EW 2022

13/03/2022 23

•

VBF H→invisible

- Select region with large p_T^{miss} and two jets, look for excess over background at large m_{jj} .
- New from CMS: dedicated VBF trigger to recover signal efficiency for 160 GeV < p_T^{miss} < 250 GeV.
 - Dominant background from V+jets (strong and EW production).
 - Extrapolate background from 1- and 2-lepton control sideband data to high- p_T^{miss} , high- m_{jj} signal region.

Stephane Cooperstein

Honing in on H->invisible

- Updated/improved ATLAS VBF H→invisible just submitted to JHEP:
 - Improved selection and signal region binning (in $\Delta\varphi_{jj},\,N_{j}.)$
 - Improved multijet background estimation.
 - Improved V+jets background estimation based on new theory calculation to constrain Z+jets from W-enriched CRs.
- New H \rightarrow invisible limits from ZH production will further improve overall H \rightarrow invisible constraints.

13/03/2022

25

Stephane Cooperstein

- Search for $h \rightarrow [XX/ZX] \rightarrow 41$
 - $X = dark photon Z_D$, neutral pseudoscalar a, ...
- No significant excesses observed by ATLAS or CMS.
- Results interpreted as model-independent limits and for a range of BSM models (dark photon, MSSM, axion-like particles).

Stephane Cooperstein

Moriond EW 2022

Search for $h \rightarrow Z J/\psi / J/\psi J/\psi / YY$

NEW 2022!

Q

- First search for $h \rightarrow Z J/\psi$.
- Experimentally clean signature with small SM backgrounds.
- SM rates inaccessible by orders of magnitude ⇒ any excess would be a clear indication of BSM physics.

q Q	$z \qquad Q \qquad Q$	y A
н	H	н
Z	z	z

Decay mode	95% C.L. upper limit on BR	
h→Z J/ψ	< 1.9 * 10 ⁻³	
$h \rightarrow J/\psi J/\psi$	< 3.8 * 10-4	
$h \rightarrow Y(nS)Y(mS)$	< 3.5 * 10-4	

Stephane Cooperstein

Moriond EW 2022

13/03/2022

Extending the physics reach to VLQ: details

NEW FOR MORIOND!

13/03/2022

- LO Madgraph with 5FS to simulate t-channel VLQ exchange.
- Interference with Z→ττ is significant and generated separately.
- Expected limits well within preferred region for B physics anomalies.
 - Slight excess observed in data, so constraints are weaker than expected.

$$\mathcal{L}_{\mathrm{U}} = \frac{g_{\mathrm{U}}}{\sqrt{2}} \mathrm{U}^{\mu} \left[\beta_{\mathrm{L}}^{i\alpha} (\bar{q}_{\mathrm{L}}^{i} \gamma_{\mu} l_{\mathrm{L}}^{\alpha}) + \beta_{\mathrm{R}}^{i\alpha} (\bar{d}_{\mathrm{R}}^{i} \gamma_{\mu} e_{\mathrm{R}}^{\alpha}) \right] + \mathrm{h.c.}$$

arXiv:2103.16558

- Local 2.8σ excess observed by CMS in ggφ @1.2 TeV appears to be excluded by ATLAS search @>95% C.L.
- No directly comparable low-mass $\phi \rightarrow \tau \tau$ search from ATLAS.

Stephane Cooperstein

Moriond EW 2022

13/03/2022 29

Results new since Moriond 2021 not shown States

- Unfortunately I could not cover the full extent of new results since Moriond 2021.
- These results are listed here for reference.

- $H \rightarrow bb + p_T^{miss}$: <u>JHEP 01 (2022) 063</u> (ATLAS)
- $H \rightarrow \gamma \gamma + p_T^{miss}$: <u>JHEP 10 (2021) 13</u> (ATLAS)
- $t \rightarrow H^{\pm}b, H^{\pm} \rightarrow cb: ATLAS-CONF-2021-037$
- $H^{\pm} \rightarrow aW^{\pm}, a \rightarrow \mu\mu$: <u>ATLAS-CONF-2021-047</u>
- VBF H[±] \rightarrow VV: Eur. Phys. J. C 81 (2021) 723 (CMS)

Stephane Cooperstein

1.6

Moriond EW 2022

- Most experimentally accessible probe of Yukawa interactions beyond third generation.
- *Evidence for* $H \rightarrow \mu \mu$ *with* LHC Run-2 data!

<u>**IHEP 01 (2021) 148</u>**</u>

Stephane Cooperstein

13/03/2022 31

$H \rightarrow Z\gamma$: further details

137 fb⁻¹ (13 TeV)

- Observed ···· Expected

68% expected 95% expected

CMS Preliminary

5⊢

ЗF

 $H \rightarrow Z\gamma \ (m_{rr} > 50 \ GeV)$

- ATLAS signal strengths "compatible within their total uncertainties" (paper).
- Compatibility tests from CMS at $\sim 2\sigma$ level \Rightarrow need Run-3 data to understand if this is a statistical effect or a real discrepancy.

Stephane Cooperstein

Moriond EW 2022

ATLAS VH, H→cc

Stephane Cooperstein

Moriond EW 2022

- Search for resonance in γγ mass spectrum between 70 and 110 GeV, from CMS with partial Run-2 13 TeV data.
 - Other results released so far consider 8 TeV data.
- Main challenges: selecting events at trigger level and background from misidentified $Z \rightarrow ee$.
- Largest excess observed at $m_{\gamma\gamma} = 95.3$ GeV, with a local (global) significance of 2.8 σ (1.3 σ).

Moriond EW 2022

13

()3